I want to consider an approach of forecasting I really like and frequently use. It allows to include the promo campaigns (or another activities and other variables as well) effect into the prediction of total amount. I will use a fictitious example and data in this post, but it works really good with my real data.  So, you can adapt this algorithm for your requirements and test it. Also, it seems simple for non-math people because ofcomplete automation.

Suppose we sell some service and our business depends on the number of subscribers we attract. Definitely, we measure the number of customers and want to predict their quantity. If we know the customer’s life time value (CLV) it allows us to predict the total revenue based on quantity of customers and CLV. So, this case looks like justified.

The first way we can use for solving this problem is multiple regression. We can find a great number of relevant indicators which influence the number of subscribers. It can be service price, seasonality, promotional activities, even S&P or Dow Jones index, etc. After we found all parameters affecting number of customers we can calculate formula and predict number of customers.

This approach has disadvantages:

  • we should collect all these indicators in one place and have historical data of all of them,
  • they should be measured at the same time intervals,
  • most importantly, we should predict all of these indicators as well. If our customers buy several different packages of our service and for different periods, even our average price doesn’t look like it can be easily predicted (not mentioning S&P index). If we use predicted indicators, their prediction errors will affect the final prediction as well.

On the other hand, stock market analysts use time-series forecasting. They are resigned by the fact that stock prices are influenced by a great number of indicators. Thus, they are looking for dependence inside the price curve. This approach is not fully suitable for us too. In case we regularly attracted extra customers via promos (we can see some peaks on curve) the time-series algorithms can identify peaks as seasonality and draw future curve with the same peaks, but what we can do if we are not planning promos in these periods or we are going to make extra promos or change their intensity.

And final statement before we start working on our prediction algorithm. I’m sure it is important for marketers to see how their promos or activities affect the number of customers / revenue (or subscribers in our case).

So, our task is to create the model which doesn’t depend on a great number of predictors from one side (looks like time-series forecasting) and on the other side includes promos effect on total number of subscribers from the other side (looks like regression).

My answer is extended ARIMA model. ARIMA is Auto Regression Integrated Moving Average. “Extended” means we can include some other information in time-series forecasting based on ARIMA model. In our case, other information is the result of promos we had and we are going to get in the future. In case we repeat promo campaigns every year at the same period and get approximately the same number of new customers ARIMA model (not extended) would be enough. It should recognize peaks as a seasonality. This example we won’t review.

Let’s start. Suppose our data is:

We have (from the left to the right):

  • # of period,
  • year,
  • month,
  • number of subscribers,
  • monthly growth (difference between number of subscribers in the next month and number of subscribers in the previous month),
  • extended (sum of promos effect),
  • several types of promo campaigns which affected the number of customers (promo1, promo2, etc.). Also, you can see that some subscribers from particular promo are gone (negative number). When we run some special low pricing promos we realize that part of these customers won’t extend their subscriptions. So, this is the example which includes negative effect of promo campaigns as well.

We need only two variables to make the prediction (‘growth’ and ‘extended’). There are other variables just for your information. Also we have two last months without number of subscribers (we are going to predict these values), but we should have promos effect which we are planning to get in future. Further, the heat-map of growth and extended variables look alike. Thus, we can make conclusion that they are connected.

In the example we will predict values from the 37th to the 42nd to see accuracy of prediction on factual data.

The code in R can be the next:

#load libraries
library(forecast)
library(TSA)
#load data set
df <- read.csv(file='data.csv')
#define periods (convenient for future, you can just change values for period you want to predict or include to factual)
s.date <- c(2010,1) #start date - factual
e.date <- c(2011,12) #end date - factual
f.s.date <- c(2013,1) #start date - prediction
f.e.date <- c(2013,12) #end date - prediction #transform values to time-series and define past and future periods
growth <- ts(df$Growth, start=s.date, end=e.date, frequency=12)
ext <- ts(df$Extended, start=s.date, end=f.e.date, frequency=12)
past <- window(ext, s.date, e.date)
future <- window(ext, f.s.date, f.e.date)
#ARIMA model
fit <- auto.arima(growth, xreg=past, stepwise=FALSE, approximation=FALSE) #determine model
forecast <- forecast(fit, xreg=future) #make prediction
plot(forecast) #plot chart
summary(forecast) #print predicted values

We should get chart and values:

As you remember we have factual data for Jan.2013-Apr.2013 which we can compare: 384 vs 451, 1224 vs 1271, 709 vs 796 and 699 vs 753. Although values are not very close, we can see that February promo affected and we saw a peak. After we add Jan.2013-Mar.2013 to factual periods, our prediction for April will be 718 which is closer to 699 than 753. That means once we have factual data we should recalculate and precise the prediction.

Thus, we have predicted number of subscribers including promo campaigns effect. If we are not satisfied with this number we can add some activity and measure new prediction. Suppose we add new activity for attracting 523 new customers in April 2013 (this means Extended will be 500 instead of -23). In this case our prediction will be:

We got the new peak 1295 in April instead of 753 (in previous prediction). Thus, we have tool for targeting number of subscribers, the only thing we need is to attract these subscribers which we are going to use for prediction ;).

Note, for making prediction for more periods just add values of extended variable in the initial data and change prediction period in the R code.

In case when described approach works poorly I can recommend you this great book written by ‘forecast’ package creator prof. Rob J Hyndman to deepen into forecasting.

Have an accurate predictions!

转自:http://analyzecore.com/2014/06/27/include-promo-effect-into-prediction/

Include promo/activity effect into the prediction (extended ARIMA model with R)的更多相关文章

  1. Module中引用Module中的Activity时报错了,错误是找不到R文件中的id引用

    1.好像库modul和主modul不能有相同名字和layout文件 2.资源文件名冲突导致的

  2. STATS 326 Applied Time Series

    STATS 326Applied Time SeriesASSIGNMENT THREEDue: 2 May 2019, 11.00 am(Worth 6% of your final grade)H ...

  3. Android官方文档翻译 十七 4.1Starting an Activity

    Starting an Activity 开启一个Activity This lesson teaches you to 这节课教给你 Understand the Lifecycle Callbac ...

  4. Android布局优化之include、merge、ViewStub的使用

    本文针对include.merge.ViewStub三个标签如何在布局复用.有效减少布局层级以及如何可以按需加载三个方面进行介绍的. 复用布局可以帮助我们创建一些可以重复使用的复杂布局.这种方式也意味 ...

  5. Android窗口管理服务WindowManagerService显示Activity组件的启动窗口(Starting Window)的过程分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8577789 在Android系统中,Activ ...

  6. 【转】关于Activity和Task的设计思路和方法

    Activity和Task是Android Application Framework架构中最基础的应用,开发者必须清楚它们的用法和一些开发技巧.本文用大量的篇幅并通过引用实例的方式一步步深入全面讲解 ...

  7. uva 1560 - Extended Lights Out(枚举 | 高斯消元)

    题目链接:uva 1560 - Extended Lights Out 题目大意:给定一个5∗6的矩阵,每一个位置上有一个灯和开关,初始矩阵表示灯的亮暗情况,假设按了这个位置的开关,将会导致周围包含自 ...

  8. Android布局优化之ViewStub、include、merge使用与源码分析

    在开发中UI布局是我们都会遇到的问题,随着UI越来越多,布局的重复性.复杂度也会随之增长.Android官方给了几个优化的方法,但是网络上的资料基本上都是对官方资料的翻译,这些资料都特别的简单,经常会 ...

  9. android布局中使用include及需注意点

    在android布局中,使用include,将另一个xml文件引入,可作为布局的一部分,但在使用include时,需注意以下问题: 一.使用include引入 如现有标题栏布局block_header ...

随机推荐

  1. js 形参和实参---2017-04-11

    一.定义 1.实参(argument):     全称为"实际参数"是在调用时传递给函数的参数. 实参可以是常量.变量.表达式.函数等, 无论实参是何种类型的量,在进行函数调用时, ...

  2. 利用_winreg模块在注册表中分析无线访问热点

    _winreg.OpenKey(key, sub_key, res, sam)     key是一个已经打开的键,或者是HKEY_CLASSES_ROOT.HKEY_CURRENT_USER.HKEY ...

  3. URL解析器urllib2

    urllib2是Python的一个库(不用下载,安装,只需要使用时导入import urllib2)它提供了一系列用于操作URL的功能. urlopen urllib2.urlopen可以接受Requ ...

  4. html 选择器之基础选择器

    我把CSS选择器分开成三部分,第一部分是我们常用的部分,我把他叫做基本选择器:第二部分我把他称作是属性选择器,第三部分我把他称作伪类选择器 一.基础选择器 1. 通配符(*):选中所有的元素 2.元素 ...

  5. HTML在网页中插入音频视频简单的滚动效果

    每次上网,打开网页后大家都会看到在网页的标签栏会有个属于他们官网的logo,现在学了HTML了,怎么不会制作这个小logo呢,其实很简单,也不需要死记硬背,每当这行代码出现的时候能知道这是什么意思就o ...

  6. vue.js2.0新手笔记(一)——安装

    知道vue很长时间了,一直只是了解,没有深入学习,也没做什么具体的东西.现在有时间了,决定重头好好学一下,就从安装开始吧. 一.安装node vue是用npm安装,npm是node的一个包管理工具,所 ...

  7. Android 正则表达式验证手机号、姓名(包含少数民族)、身份证号

    最近项目中新增的功能,需要对手机号.姓名.身份证号等一些信息进行验证,最好的方法是通过正则表达式来验证,网上查了一些资料,写了这几个工具方法. 1.验证手机号 规则:第一位只能是1,第二位为3-8中的 ...

  8. __read_mostly变量含义

     1. 定义 __read_mostly原语将定义的变量为存放在.data.read_mostly段中,原型在include/asm/cache.h 中定义: #define __read_mos ...

  9. JQuery获取元素类名

    一般而言,JQuery可以利用attr来获取元素的属性值, 1.$("元素").attr("属性");                //获取指定属性的值 2. ...

  10. javascript中的==与===

    一.主要区别: 1.通俗的来说,==是值的比较,而===不仅仅比较值,还比较引用的是否是同一个对象. 2.用==来比较的时候,如果两个数的操作数的类型不一样,会先转换.而===的操作数则不会进行任何转 ...