Include promo/activity effect into the prediction (extended ARIMA model with R)
I want to consider an approach of forecasting I really like and frequently use. It allows to include the promo campaigns (or another activities and other variables as well) effect into the prediction of total amount. I will use a fictitious example and data in this post, but it works really good with my real data. So, you can adapt this algorithm for your requirements and test it. Also, it seems simple for non-math people because ofcomplete automation.
Suppose we sell some service and our business depends on the number of subscribers we attract. Definitely, we measure the number of customers and want to predict their quantity. If we know the customer’s life time value (CLV) it allows us to predict the total revenue based on quantity of customers and CLV. So, this case looks like justified.
The first way we can use for solving this problem is multiple regression. We can find a great number of relevant indicators which influence the number of subscribers. It can be service price, seasonality, promotional activities, even S&P or Dow Jones index, etc. After we found all parameters affecting number of customers we can calculate formula and predict number of customers.
This approach has disadvantages:
- we should collect all these indicators in one place and have historical data of all of them,
- they should be measured at the same time intervals,
- most importantly, we should predict all of these indicators as well. If our customers buy several different packages of our service and for different periods, even our average price doesn’t look like it can be easily predicted (not mentioning S&P index). If we use predicted indicators, their prediction errors will affect the final prediction as well.
On the other hand, stock market analysts use time-series forecasting. They are resigned by the fact that stock prices are influenced by a great number of indicators. Thus, they are looking for dependence inside the price curve. This approach is not fully suitable for us too. In case we regularly attracted extra customers via promos (we can see some peaks on curve) the time-series algorithms can identify peaks as seasonality and draw future curve with the same peaks, but what we can do if we are not planning promos in these periods or we are going to make extra promos or change their intensity.
And final statement before we start working on our prediction algorithm. I’m sure it is important for marketers to see how their promos or activities affect the number of customers / revenue (or subscribers in our case).
So, our task is to create the model which doesn’t depend on a great number of predictors from one side (looks like time-series forecasting) and on the other side includes promos effect on total number of subscribers from the other side (looks like regression).
My answer is extended ARIMA model. ARIMA is Auto Regression Integrated Moving Average. “Extended” means we can include some other information in time-series forecasting based on ARIMA model. In our case, other information is the result of promos we had and we are going to get in the future. In case we repeat promo campaigns every year at the same period and get approximately the same number of new customers ARIMA model (not extended) would be enough. It should recognize peaks as a seasonality. This example we won’t review.
Let’s start. Suppose our data is:
We have (from the left to the right):
- # of period,
- year,
- month,
- number of subscribers,
- monthly growth (difference between number of subscribers in the next month and number of subscribers in the previous month),
- extended (sum of promos effect),
- several types of promo campaigns which affected the number of customers (promo1, promo2, etc.). Also, you can see that some subscribers from particular promo are gone (negative number). When we run some special low pricing promos we realize that part of these customers won’t extend their subscriptions. So, this is the example which includes negative effect of promo campaigns as well.
We need only two variables to make the prediction (‘growth’ and ‘extended’). There are other variables just for your information. Also we have two last months without number of subscribers (we are going to predict these values), but we should have promos effect which we are planning to get in future. Further, the heat-map of growth and extended variables look alike. Thus, we can make conclusion that they are connected.
In the example we will predict values from the 37th to the 42nd to see accuracy of prediction on factual data.
The code in R can be the next:
#load libraries
library(forecast)
library(TSA)
#load data set
df <- read.csv(file='data.csv')
#define periods (convenient for future, you can just change values for period you want to predict or include to factual)
s.date <- c(2010,1) #start date - factual
e.date <- c(2011,12) #end date - factual
f.s.date <- c(2013,1) #start date - prediction
f.e.date <- c(2013,12) #end date - prediction #transform values to time-series and define past and future periods
growth <- ts(df$Growth, start=s.date, end=e.date, frequency=12)
ext <- ts(df$Extended, start=s.date, end=f.e.date, frequency=12)
past <- window(ext, s.date, e.date)
future <- window(ext, f.s.date, f.e.date)
#ARIMA model
fit <- auto.arima(growth, xreg=past, stepwise=FALSE, approximation=FALSE) #determine model
forecast <- forecast(fit, xreg=future) #make prediction
plot(forecast) #plot chart
summary(forecast) #print predicted values
We should get chart and values:
As you remember we have factual data for Jan.2013-Apr.2013 which we can compare: 384 vs 451, 1224 vs 1271, 709 vs 796 and 699 vs 753. Although values are not very close, we can see that February promo affected and we saw a peak. After we add Jan.2013-Mar.2013 to factual periods, our prediction for April will be 718 which is closer to 699 than 753. That means once we have factual data we should recalculate and precise the prediction.
Thus, we have predicted number of subscribers including promo campaigns effect. If we are not satisfied with this number we can add some activity and measure new prediction. Suppose we add new activity for attracting 523 new customers in April 2013 (this means Extended will be 500 instead of -23). In this case our prediction will be:
We got the new peak 1295 in April instead of 753 (in previous prediction). Thus, we have tool for targeting number of subscribers, the only thing we need is to attract these subscribers which we are going to use for prediction ;).
Note, for making prediction for more periods just add values of extended variable in the initial data and change prediction period in the R code.
In case when described approach works poorly I can recommend you this great book written by ‘forecast’ package creator prof. Rob J Hyndman to deepen into forecasting.
Have an accurate predictions!
转自:http://analyzecore.com/2014/06/27/include-promo-effect-into-prediction/
Include promo/activity effect into the prediction (extended ARIMA model with R)的更多相关文章
- Module中引用Module中的Activity时报错了,错误是找不到R文件中的id引用
1.好像库modul和主modul不能有相同名字和layout文件 2.资源文件名冲突导致的
- STATS 326 Applied Time Series
STATS 326Applied Time SeriesASSIGNMENT THREEDue: 2 May 2019, 11.00 am(Worth 6% of your final grade)H ...
- Android官方文档翻译 十七 4.1Starting an Activity
Starting an Activity 开启一个Activity This lesson teaches you to 这节课教给你 Understand the Lifecycle Callbac ...
- Android布局优化之include、merge、ViewStub的使用
本文针对include.merge.ViewStub三个标签如何在布局复用.有效减少布局层级以及如何可以按需加载三个方面进行介绍的. 复用布局可以帮助我们创建一些可以重复使用的复杂布局.这种方式也意味 ...
- Android窗口管理服务WindowManagerService显示Activity组件的启动窗口(Starting Window)的过程分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8577789 在Android系统中,Activ ...
- 【转】关于Activity和Task的设计思路和方法
Activity和Task是Android Application Framework架构中最基础的应用,开发者必须清楚它们的用法和一些开发技巧.本文用大量的篇幅并通过引用实例的方式一步步深入全面讲解 ...
- uva 1560 - Extended Lights Out(枚举 | 高斯消元)
题目链接:uva 1560 - Extended Lights Out 题目大意:给定一个5∗6的矩阵,每一个位置上有一个灯和开关,初始矩阵表示灯的亮暗情况,假设按了这个位置的开关,将会导致周围包含自 ...
- Android布局优化之ViewStub、include、merge使用与源码分析
在开发中UI布局是我们都会遇到的问题,随着UI越来越多,布局的重复性.复杂度也会随之增长.Android官方给了几个优化的方法,但是网络上的资料基本上都是对官方资料的翻译,这些资料都特别的简单,经常会 ...
- android布局中使用include及需注意点
在android布局中,使用include,将另一个xml文件引入,可作为布局的一部分,但在使用include时,需注意以下问题: 一.使用include引入 如现有标题栏布局block_header ...
随机推荐
- android正则表达式隐藏邮箱地址中间字符
// String emailStr = email.substring(0, email.lastIndexOf("@"));// if (emailStr.length() & ...
- ios 添加工程依赖只能生成Generic Xcode Archive 文件原因
问题说明:工程引用了外部类库, 默认生成的archive是 Generic Xcode Archive 格式的 无法发布和生成ipa文件. 解决处理: 1.将Build Settings->De ...
- ES6 对let声明的一点思考
说到ES6的let变量声明,我估计很多人会想起下面几个主要的特点: 没有变量声明提升 拥有块级作用域 暂时死区 不能重复声明 很多教程和总结基本都说到了这几点(说实话大部分文章都大同小异,摘录的居多) ...
- 数据可视化之MarkPoint
MarkPoint是什么效果?如上图,一闪一闪亮晶晶的效果,这是在Echarts中对应的效果.我最早看到的是腾讯的一个Flash的版本,显示当前QQ在线人数的全国分布效果,感觉效果很炫,当时也在想,怎 ...
- 用 Python 和 Stanford CoreNLP 进行中文自然语言处理
实验环境:Windows 7 / Python 3.6.1 / CoreNLP 3.7.0 一.下载 CoreNLP 在 Stanford NLP 官网 下载最新的模型文件: CoreNLP 完整包 ...
- 请为main函数提供返回值
很多人甚至市面上的一些书籍,都使用了void main( ) ,其实这是错误的.C/C++ 中从来没有定义过void main( ).C++ 之父 Bjarne Stroustrup 在他的主页上的 ...
- VirtualBox实现内外网络互访问的配置
作者 jrl137824675 来源地址:http://www.2cto.com/os/201205/133370.html 环境: 宿主机操作系统 Windows XP s ...
- Omi树组件omi-tree编写指南
Omi框架能够以少量的代码声明式地编写可拖拽移动节点的树形组件. 通常树组件能够考验UI框架的健壮性,因为需要使用到UI框架的如下特性: 组件嵌套 组件传值 组件批量传值 组件依赖自身递归嵌套(nes ...
- 基于python的知乎开源爬虫 zhihu_oauth使用介绍
今天在无意之中发现了一个知乎的开源爬虫,是基于Python的,名字叫zhihu_oauth,看了一下在github上面star数还挺多的,貌似文档也挺详细的,于是就稍微研究了一下.发现果然很好用啊.就 ...
- 基于Struts2,Spring4,Hibernate4框架的系统架构设计与示例系统实现
笔者在大学中迷迷糊糊地度过了四年的光景,心中有那么一点目标,但总感觉找不到发力的方向. 在四年间,尝试写过代码结构糟糕,没有意义的课程设计,尝试捣鼓过Android开发,尝试探索过软件工程在实际开发中 ...