AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类。层自左向右、自上向下读取,关联层分为一组,高度、宽度减小,深度增加。深度增加减少网络计算量。

训练模型数据集 Stanford计算机视觉站点Stanford Dogs http://vision.stanford.edu/aditya86/ImageNetDogs/ 。数据下载解压到模型代码同一路径imagenet-dogs目录下。包含的120种狗图像。80%训练,20%测试。产品模型需要预留原始数据交叉验证。每幅图像JPEG格式(RGB),尺寸不一。

图像转TFRecord文件,有助加速训练,简化图像标签匹配,图像分离利用检查点文件对模型进行不间断测试。转换图像格式把颜色空间转灰度,图像修改统一尺寸,标签除上每幅图像。训练前只进行一次预处理,时间较长。

glob.glob 枚举指定路径目录,显示数据集文件结构。“*”通配符可以实现模糊查找。文件名中8个数字对应ImageNet类别WordNetID。ImageNet网站可用WordNetID查图像细节: http://www.image-net.org/synset?wnid=n02085620 。

文件名分解为品种和相应的文件名,品种对应文件夹名称。依据品种对图像分组。枚举每个品种图像,20%图像划入测试集。检查每个品种测试图像是否至少有全部图像的18%。目录和图像组织到两个与每个品种相关的字典,包含各品种所有图像。分类图像组织到字典中,简化选择分类图像及归类过程。

预处理阶段,依次遍历所有分类图像,打开列表中文件。用dataset图像填充TFRecord文件,把类别包含进去。dataset键值对应文件列表标签。record_location 存储TFRecord输出路径。枚举dataset,当前索引用于文件划分,每隔100m幅图像,训练样本信息写入新的TFRecord文件,加快写操作进程。无法被TensorFlow识别为JPEG图像,用try/catch忽略。转为灰度图减少计算量和内存占用。tf.cast把RGB值转换到[0,1)区间内。标签按字符串存储较高效,最好转换为整数索引或独热编码秩1张量。

打开每幅图像,转换为灰度图,调整尺寸,添加到TFRecord文件。tf.image.resize_images函数把所有图像调整为相同尺寸,不考虑长宽比,有扭曲。裁剪、边界填充能保持图像长宽比。

按照TFRecord文件读取图像,每次加载少量图像及标签。修改图像形状有助训练和输出可视化。匹配所有在训练集目录下TFRecord文件加载训练图像。每个TFRecord文件包含多幅图像。tf.parse_single_example只从文件提取单个样本。批运算可同时训练多幅图像或单幅图像,需要足够系统内存。

图像转灰度值为[0,1)浮点类型,匹配convolution2d期望输入。卷积输出第1维和最后一维不改变,中间两维发生变化。tf.contrib.layers.convolution2d创建模型第1层。weights_initializer设置正态随机值,第一组滤波器填充正态分布随机数。滤波器设置trainable,信息输入网络,权值调整,提高模型准确率。
max_pool把输出降采样。ksize、strides ([1,2,2,1]),卷积输出形状减半。输出形状减小,不改变滤波器数量(输出通道)或图像批数据尺寸。减少分量,与图像(滤波器)高度、宽度有关。更多输出通道,滤波器数量增加,2倍于第一层。多个卷积和池化层减少输入高度、宽度,增加深度。很多架构,卷积层和池化层超过5层。训练调试时间更长,能匹配更多更复杂模式。
图像每个点与输出神经元建立全连接。softmax,全连接层需要二阶张量。第1维区分图像,第2维输入张量秩1张量。tf.reshape 指示和使用其余所有维,-1把最后池化层调整为巨大秩1张量。
池化层展开,网络当前状态与预测全连接层整合。weights_initializer接收可调用参数,lambda表达式返回截断正态分布,指定分布标准差。dropout 削减模型中神经元重要性。tf.contrib.layers.fully_connected 输出前面所有层与训练中分类的全连接。每个像素与分类关联。网络每一步将输入图像转化为滤波减小尺寸。滤波器与标签匹配。减少训练、测试网络计算量,输出更具一般性。

训练数据真实标签和模型预测结果,输入到训练优化器(优化每层权值)计算模型损失。数次迭代,每次提升模型准确率。大部分分类函数(tf.nn.softmax)要求数值类型标签。每个标签转换代表包含所有分类列表索引整数。tf.map_fn 匹配每个标签并返回类别列表索引。map依据目录列表创建包含分类列表。tf.map_fn 可用指定函数对数据流图张量映射,生成仅包含每个标签在所有类标签列表索引秩1张量。tf.nn.softmax用索引预测。

调试CNN,观察滤波器(卷积核)每轮迭代变化。设计良好CNN,第一个卷积层工作,输入权值被随机初始化。权值通过图像激活,激活函数输出(特征图)随机。特征图可视化,输出外观与原始图相似,被施加静力(static)。静力由所有权值的随机激发。经过多轮迭代,权值被调整拟合训练反馈,滤波器趋于一致。网络收敛,滤波器与图像不同细小模式类似。tf.image_summary得到训练后的滤波器和特征图简单视图。数据流图图像概要输出(image summary output)从整体了解所使用的滤波器和输入图像特征图。TensorDebugger,迭代中以GIF动画查看滤波器变化。

文本输入存储在SparseTensor,大部分分量为0。CNN使用稠密输入,每个值都重要,输入大部分分量非0。

    import tensorflow as tf
import glob
from itertools import groupby
from collections import defaultdict
sess = tf.InteractiveSession()
image_filenames = glob.glob("./imagenet-dogs/n02*/*.jpg")
image_filenames[0:2]
training_dataset = defaultdict(list)
testing_dataset = defaultdict(list)
image_filename_with_breed = map(lambda filename: (filename.split("/")[2], filename), image_filenames)
for dog_breed, breed_images in groupby(image_filename_with_breed, lambda x: x[0]):
for i, breed_image in enumerate(breed_images):
if i % 5 == 0:
testing_dataset[dog_breed].append(breed_image[1])
else:
training_dataset[dog_breed].append(breed_image[1])
breed_training_count = len(training_dataset[dog_breed])
breed_testing_count = len(testing_dataset[dog_breed])
breed_training_count_float = float(breed_training_count)
breed_testing_count_float = float(breed_testing_count)
assert round(breed_testing_count_float / (breed_training_count_float + breed_testing_count_float), 2) > 0.18, "Not enough testing images."
print "training_dataset testing_dataset END ------------------------------------------------------"
def write_records_file(dataset, record_location):
writer = None
current_index = 0
for breed, images_filenames in dataset.items():
for image_filename in images_filenames:
if current_index % 100 == 0:
if writer:
writer.close()
record_filename = "{record_location}-{current_index}.tfrecords".format(
record_location=record_location,
current_index=current_index)
writer = tf.python_io.TFRecordWriter(record_filename)
print record_filename + "------------------------------------------------------"
current_index += 1
image_file = tf.read_file(image_filename)
try:
image = tf.image.decode_jpeg(image_file)
except:
print(image_filename)
continue
grayscale_image = tf.image.rgb_to_grayscale(image)
resized_image = tf.image.resize_images(grayscale_image, [250, 151])
image_bytes = sess.run(tf.cast(resized_image, tf.uint8)).tobytes()
image_label = breed.encode("utf-8")
example = tf.train.Example(features=tf.train.Features(feature={
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_label])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
}))
writer.write(example.SerializeToString())
writer.close()
write_records_file(testing_dataset, "./output/testing-images/testing-image")
write_records_file(training_dataset, "./output/training-images/training-image")
print "write_records_file testing_dataset training_dataset END------------------------------------------------------"
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once("./output/training-images/*.tfrecords"))
reader = tf.TFRecordReader()
_, serialized = reader.read(filename_queue)
features = tf.parse_single_example(
serialized,
features={
'label': tf.FixedLenFeature([], tf.string),
'image': tf.FixedLenFeature([], tf.string),
})
record_image = tf.decode_raw(features['image'], tf.uint8)
image = tf.reshape(record_image, [250, 151, 1])
label = tf.cast(features['label'], tf.string)
min_after_dequeue = 10
batch_size = 3
capacity = min_after_dequeue + 3 * batch_size
image_batch, label_batch = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue)
print "load image from TFRecord END------------------------------------------------------"
float_image_batch = tf.image.convert_image_dtype(image_batch, tf.float32)
conv2d_layer_one = tf.contrib.layers.convolution2d(
float_image_batch,
num_outputs=32,
kernel_size=(5,5),
activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal,
stride=(2, 2),
trainable=True)
pool_layer_one = tf.nn.max_pool(conv2d_layer_one,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv2d_layer_one.get_shape(), pool_layer_one.get_shape()
print "conv2d_layer_one pool_layer_one END------------------------------------------------------"
conv2d_layer_two = tf.contrib.layers.convolution2d(
pool_layer_one,
num_outputs=64,
kernel_size=(5,5),
activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal,
stride=(1, 1),
trainable=True)
pool_layer_two = tf.nn.max_pool(conv2d_layer_two,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv2d_layer_two.get_shape(), pool_layer_two.get_shape()
print "conv2d_layer_two pool_layer_two END------------------------------------------------------"
flattened_layer_two = tf.reshape(
pool_layer_two,
[
batch_size,
-1
])
flattened_layer_two.get_shape()
print "flattened_layer_two END------------------------------------------------------"
hidden_layer_three = tf.contrib.layers.fully_connected(
flattened_layer_two,
512,
weights_initializer=lambda i, dtype: tf.truncated_normal([38912, 512], stddev=0.1),
activation_fn=tf.nn.relu
)
hidden_layer_three = tf.nn.dropout(hidden_layer_three, 0.1)
final_fully_connected = tf.contrib.layers.fully_connected(
hidden_layer_three,
120,
weights_initializer=lambda i, dtype: tf.truncated_normal([512, 120], stddev=0.1)
)
print "final_fully_connected END------------------------------------------------------"
labels = list(map(lambda c: c.split("/")[-1], glob.glob("./imagenet-dogs/*")))
train_labels = tf.map_fn(lambda l: tf.where(tf.equal(labels, l))[0,0:1][0], label_batch, dtype=tf.int64)
loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
final_fully_connected, train_labels))
batch = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
0.01,
batch * 3,
120,
0.95,
staircase=True)
optimizer = tf.train.AdamOptimizer(
learning_rate, 0.9).minimize(
loss, global_step=batch)
train_prediction = tf.nn.softmax(final_fully_connected)
print "train_prediction END------------------------------------------------------"
filename_queue.close(cancel_pending_enqueues=True)
coord.request_stop()
coord.join(threads)
print "END------------------------------------------------------"

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试的更多相关文章

  1. 驱动开发学习笔记. 0.07 Uboot链接地址 加载地址 和 链接脚本地址

    驱动开发学习笔记. 0.07 Uboot链接地址 加载地址 和 链接脚本地址 最近重新看了乾龙_Heron的<ARM 上电启动及 Uboot 代码分析>(下简称<代码分析>) ...

  2. Entity Framework学习笔记(五)----Linq查询(2)---贪婪加载

    请注明转载地址:http://www.cnblogs.com/arhat 在上一章中,我们使用了Linq对Entity Framework进行了一个查询,但是通过学习我们却发现了懒加载给我来的性能上的 ...

  3. NGUI学习笔记(四):动态加载UI和NGUI事件

    动态加载UI 我们进入一个场景后,如果将这个场景所有可能用到的UI都直接放在场景中做好,由于要在进入场景时就部署好所有的UI对象,那么当UI对象较多时会碰到的问题是:1.初始化场景会产生非常明显的卡顿 ...

  4. Android学习笔记(二)之异步加载图片

    最近在android开发中碰到比较棘手的问题,就是加载图片内存溢出.我开发的是一个新闻应用,应用中用到大量的图片,一个界面中可能会有上百张图片.开发android应用的朋友可能或多或少碰到加载图片内存 ...

  5. 学习笔记 - 用js判断页面是否加载完成实现代码

    用document.onreadystatechange的方法来监听状态改变, 然后用document.readyState == "complete"判断是否加载完成 docum ...

  6. Django 学习笔记(三) --- HTML 模版加载 css、js、img 静态文件

    人生苦短 ~ Tips:仅适用于 Python 3+(反正差别不大,py2 改改也能用).因为据 Python 之父 Guido van Rossum 说会在 2020 年停止对 Python 2 的 ...

  7. Unity学习笔记(5):动态加载Prefab

    第一种方法,从Resources文件夹读取Prefab Assets/Resources文件夹是Unity中的一个特殊文件夹,在博主当前的认知里,放在这个文件夹里的Prefab可以被代码动态加载 直接 ...

  8. Android学习笔记_50_(转 四种加载方式详解(standard singleTop singleTask singleInstance)

    Android之四种加载方式 (http://marshal.easymorse.com/archives/2950 图片) 在多Activity开发中,有可能是自己应用之间的Activity跳转,或 ...

  9. ThinkPHP3.2.3学习笔记4---统计ThinkPHP3.2.3加载的文件

    将ThinkPHP3.2.3的入口文件index.php加入一个函数getIncludeFiles,文件内容变成如下所示: <?php // +------------------------- ...

随机推荐

  1. struts2 之 Action的创建方式

    总结:struts2是一个轻量级框架,提供了无侵入性的实现方式,struts2也提供了接口和类来实现action.通过实现接口或者继承类来实现action可以实现struts2提供的相关功能, 1. ...

  2. SEO,搜索引擎优化原理方法等整体把握

    SEO 搜索算法: 全文文字 title 标签,title里面的文字 link 链接 link 链接里的文字 站点信任度 最佳实践: 一.设置title 准确的描述当前网页的内容 提高站点内title ...

  3. 快速认识HTML及一般标签

    HTML(Hype Text Language,超文本标记语言) <html >--开始标签 <head> 网页控制信息 <title>网页标题</title ...

  4. 【caffe-windows】 caffe-master 之 训练自己数据集(图片转换成lmdb or leveldb)

    前期准备: 文件夹train:此文件夹中按类别分好子文件夹,各子文件夹里存放相应图片 文件夹test:同train,有多少类就有多少个子文件夹 trainlabels.txt : 存的是训练集的标签  ...

  5. Extjs6(一)——用sencha cmd建立一个ExtJs小项目

    本文基于ext-6.0.0 一.用sencha cmd建立一个ExtJs小项目 首先,需要一个命令行工具.进入extjs所在目录. 然后,输入:sencha -sdk [ExtJs6.0文件夹地址] ...

  6. JavaEE开发之SpringMVC中的自定义消息转换器与文件上传

    上篇博客我们详细的聊了<JavaEE开发之SpringMVC中的静态资源映射及服务器推送技术>,本篇博客依然是JavaEE开发中的内容,我们就来聊一下SpringMVC中的自定义消息转发器 ...

  7. jquery easyui的datagrid在初始化的时候会请求两次URL?

    我们项目前端用的是jquery easyui,刚开始使用datagrid加载列表初始化时总是请求两次URL,这让人非常不解,怎么总是请求两次呢?数据一多,加载速度明显变慢,通过查资料才知道原来是重复声 ...

  8. mui开发app之js将base64转图片文件

    之前我已经做过一个利用cropper裁剪并且制作头像的功能.如何在mui app中实现相册或相机获取图片后裁剪做头像请看另一篇博客:mui开发app之cropper裁剪后上传头像的实现 但是当时裁剪后 ...

  9. 阿里云CentOS7.2服务器的安装

    第一步:下载服务器系统ISO安装文件 我使用的是阿里云的镜像:因为阿里云的服务在国内相对比较成熟 服务器镜像下载如下:http://mirrors.aliyun.com/centos/7/isos/x ...

  10. windows下配置mysql数据库主从

    所用到工具: Mysql.Navicat Premium: 主库设置: 一.设置my.ini 文件: 1.在安装目录下找到my.ini 文件: 默认路径:C:\Program Files\MySQL\ ...