学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试
AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类。层自左向右、自上向下读取,关联层分为一组,高度、宽度减小,深度增加。深度增加减少网络计算量。
训练模型数据集 Stanford计算机视觉站点Stanford Dogs http://vision.stanford.edu/aditya86/ImageNetDogs/ 。数据下载解压到模型代码同一路径imagenet-dogs目录下。包含的120种狗图像。80%训练,20%测试。产品模型需要预留原始数据交叉验证。每幅图像JPEG格式(RGB),尺寸不一。
图像转TFRecord文件,有助加速训练,简化图像标签匹配,图像分离利用检查点文件对模型进行不间断测试。转换图像格式把颜色空间转灰度,图像修改统一尺寸,标签除上每幅图像。训练前只进行一次预处理,时间较长。
glob.glob 枚举指定路径目录,显示数据集文件结构。“*”通配符可以实现模糊查找。文件名中8个数字对应ImageNet类别WordNetID。ImageNet网站可用WordNetID查图像细节: http://www.image-net.org/synset?wnid=n02085620 。
文件名分解为品种和相应的文件名,品种对应文件夹名称。依据品种对图像分组。枚举每个品种图像,20%图像划入测试集。检查每个品种测试图像是否至少有全部图像的18%。目录和图像组织到两个与每个品种相关的字典,包含各品种所有图像。分类图像组织到字典中,简化选择分类图像及归类过程。
预处理阶段,依次遍历所有分类图像,打开列表中文件。用dataset图像填充TFRecord文件,把类别包含进去。dataset键值对应文件列表标签。record_location 存储TFRecord输出路径。枚举dataset,当前索引用于文件划分,每隔100m幅图像,训练样本信息写入新的TFRecord文件,加快写操作进程。无法被TensorFlow识别为JPEG图像,用try/catch忽略。转为灰度图减少计算量和内存占用。tf.cast把RGB值转换到[0,1)区间内。标签按字符串存储较高效,最好转换为整数索引或独热编码秩1张量。
打开每幅图像,转换为灰度图,调整尺寸,添加到TFRecord文件。tf.image.resize_images函数把所有图像调整为相同尺寸,不考虑长宽比,有扭曲。裁剪、边界填充能保持图像长宽比。
按照TFRecord文件读取图像,每次加载少量图像及标签。修改图像形状有助训练和输出可视化。匹配所有在训练集目录下TFRecord文件加载训练图像。每个TFRecord文件包含多幅图像。tf.parse_single_example只从文件提取单个样本。批运算可同时训练多幅图像或单幅图像,需要足够系统内存。
图像转灰度值为[0,1)浮点类型,匹配convolution2d期望输入。卷积输出第1维和最后一维不改变,中间两维发生变化。tf.contrib.layers.convolution2d创建模型第1层。weights_initializer设置正态随机值,第一组滤波器填充正态分布随机数。滤波器设置trainable,信息输入网络,权值调整,提高模型准确率。
max_pool把输出降采样。ksize、strides ([1,2,2,1]),卷积输出形状减半。输出形状减小,不改变滤波器数量(输出通道)或图像批数据尺寸。减少分量,与图像(滤波器)高度、宽度有关。更多输出通道,滤波器数量增加,2倍于第一层。多个卷积和池化层减少输入高度、宽度,增加深度。很多架构,卷积层和池化层超过5层。训练调试时间更长,能匹配更多更复杂模式。
图像每个点与输出神经元建立全连接。softmax,全连接层需要二阶张量。第1维区分图像,第2维输入张量秩1张量。tf.reshape 指示和使用其余所有维,-1把最后池化层调整为巨大秩1张量。
池化层展开,网络当前状态与预测全连接层整合。weights_initializer接收可调用参数,lambda表达式返回截断正态分布,指定分布标准差。dropout 削减模型中神经元重要性。tf.contrib.layers.fully_connected 输出前面所有层与训练中分类的全连接。每个像素与分类关联。网络每一步将输入图像转化为滤波减小尺寸。滤波器与标签匹配。减少训练、测试网络计算量,输出更具一般性。
训练数据真实标签和模型预测结果,输入到训练优化器(优化每层权值)计算模型损失。数次迭代,每次提升模型准确率。大部分分类函数(tf.nn.softmax)要求数值类型标签。每个标签转换代表包含所有分类列表索引整数。tf.map_fn 匹配每个标签并返回类别列表索引。map依据目录列表创建包含分类列表。tf.map_fn 可用指定函数对数据流图张量映射,生成仅包含每个标签在所有类标签列表索引秩1张量。tf.nn.softmax用索引预测。
调试CNN,观察滤波器(卷积核)每轮迭代变化。设计良好CNN,第一个卷积层工作,输入权值被随机初始化。权值通过图像激活,激活函数输出(特征图)随机。特征图可视化,输出外观与原始图相似,被施加静力(static)。静力由所有权值的随机激发。经过多轮迭代,权值被调整拟合训练反馈,滤波器趋于一致。网络收敛,滤波器与图像不同细小模式类似。tf.image_summary得到训练后的滤波器和特征图简单视图。数据流图图像概要输出(image summary output)从整体了解所使用的滤波器和输入图像特征图。TensorDebugger,迭代中以GIF动画查看滤波器变化。
文本输入存储在SparseTensor,大部分分量为0。CNN使用稠密输入,每个值都重要,输入大部分分量非0。
import tensorflow as tf
import glob
from itertools import groupby
from collections import defaultdict
sess = tf.InteractiveSession()
image_filenames = glob.glob("./imagenet-dogs/n02*/*.jpg")
image_filenames[0:2]
training_dataset = defaultdict(list)
testing_dataset = defaultdict(list)
image_filename_with_breed = map(lambda filename: (filename.split("/")[2], filename), image_filenames)
for dog_breed, breed_images in groupby(image_filename_with_breed, lambda x: x[0]):
for i, breed_image in enumerate(breed_images):
if i % 5 == 0:
testing_dataset[dog_breed].append(breed_image[1])
else:
training_dataset[dog_breed].append(breed_image[1])
breed_training_count = len(training_dataset[dog_breed])
breed_testing_count = len(testing_dataset[dog_breed])
breed_training_count_float = float(breed_training_count)
breed_testing_count_float = float(breed_testing_count)
assert round(breed_testing_count_float / (breed_training_count_float + breed_testing_count_float), 2) > 0.18, "Not enough testing images."
print "training_dataset testing_dataset END ------------------------------------------------------"
def write_records_file(dataset, record_location):
writer = None
current_index = 0
for breed, images_filenames in dataset.items():
for image_filename in images_filenames:
if current_index % 100 == 0:
if writer:
writer.close()
record_filename = "{record_location}-{current_index}.tfrecords".format(
record_location=record_location,
current_index=current_index)
writer = tf.python_io.TFRecordWriter(record_filename)
print record_filename + "------------------------------------------------------"
current_index += 1
image_file = tf.read_file(image_filename)
try:
image = tf.image.decode_jpeg(image_file)
except:
print(image_filename)
continue
grayscale_image = tf.image.rgb_to_grayscale(image)
resized_image = tf.image.resize_images(grayscale_image, [250, 151])
image_bytes = sess.run(tf.cast(resized_image, tf.uint8)).tobytes()
image_label = breed.encode("utf-8")
example = tf.train.Example(features=tf.train.Features(feature={
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_label])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
}))
writer.write(example.SerializeToString())
writer.close()
write_records_file(testing_dataset, "./output/testing-images/testing-image")
write_records_file(training_dataset, "./output/training-images/training-image")
print "write_records_file testing_dataset training_dataset END------------------------------------------------------"
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once("./output/training-images/*.tfrecords"))
reader = tf.TFRecordReader()
_, serialized = reader.read(filename_queue)
features = tf.parse_single_example(
serialized,
features={
'label': tf.FixedLenFeature([], tf.string),
'image': tf.FixedLenFeature([], tf.string),
})
record_image = tf.decode_raw(features['image'], tf.uint8)
image = tf.reshape(record_image, [250, 151, 1])
label = tf.cast(features['label'], tf.string)
min_after_dequeue = 10
batch_size = 3
capacity = min_after_dequeue + 3 * batch_size
image_batch, label_batch = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue)
print "load image from TFRecord END------------------------------------------------------"
float_image_batch = tf.image.convert_image_dtype(image_batch, tf.float32)
conv2d_layer_one = tf.contrib.layers.convolution2d(
float_image_batch,
num_outputs=32,
kernel_size=(5,5),
activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal,
stride=(2, 2),
trainable=True)
pool_layer_one = tf.nn.max_pool(conv2d_layer_one,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv2d_layer_one.get_shape(), pool_layer_one.get_shape()
print "conv2d_layer_one pool_layer_one END------------------------------------------------------"
conv2d_layer_two = tf.contrib.layers.convolution2d(
pool_layer_one,
num_outputs=64,
kernel_size=(5,5),
activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal,
stride=(1, 1),
trainable=True)
pool_layer_two = tf.nn.max_pool(conv2d_layer_two,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv2d_layer_two.get_shape(), pool_layer_two.get_shape()
print "conv2d_layer_two pool_layer_two END------------------------------------------------------"
flattened_layer_two = tf.reshape(
pool_layer_two,
[
batch_size,
-1
])
flattened_layer_two.get_shape()
print "flattened_layer_two END------------------------------------------------------"
hidden_layer_three = tf.contrib.layers.fully_connected(
flattened_layer_two,
512,
weights_initializer=lambda i, dtype: tf.truncated_normal([38912, 512], stddev=0.1),
activation_fn=tf.nn.relu
)
hidden_layer_three = tf.nn.dropout(hidden_layer_three, 0.1)
final_fully_connected = tf.contrib.layers.fully_connected(
hidden_layer_three,
120,
weights_initializer=lambda i, dtype: tf.truncated_normal([512, 120], stddev=0.1)
)
print "final_fully_connected END------------------------------------------------------"
labels = list(map(lambda c: c.split("/")[-1], glob.glob("./imagenet-dogs/*")))
train_labels = tf.map_fn(lambda l: tf.where(tf.equal(labels, l))[0,0:1][0], label_batch, dtype=tf.int64)
loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
final_fully_connected, train_labels))
batch = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
0.01,
batch * 3,
120,
0.95,
staircase=True)
optimizer = tf.train.AdamOptimizer(
learning_rate, 0.9).minimize(
loss, global_step=batch)
train_prediction = tf.nn.softmax(final_fully_connected)
print "train_prediction END------------------------------------------------------"
filename_queue.close(cancel_pending_enqueues=True)
coord.request_stop()
coord.join(threads)
print "END------------------------------------------------------"
参考资料:
《面向机器智能的TensorFlow实践》
欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz
学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试的更多相关文章
- 驱动开发学习笔记. 0.07 Uboot链接地址 加载地址 和 链接脚本地址
驱动开发学习笔记. 0.07 Uboot链接地址 加载地址 和 链接脚本地址 最近重新看了乾龙_Heron的<ARM 上电启动及 Uboot 代码分析>(下简称<代码分析>) ...
- Entity Framework学习笔记(五)----Linq查询(2)---贪婪加载
请注明转载地址:http://www.cnblogs.com/arhat 在上一章中,我们使用了Linq对Entity Framework进行了一个查询,但是通过学习我们却发现了懒加载给我来的性能上的 ...
- NGUI学习笔记(四):动态加载UI和NGUI事件
动态加载UI 我们进入一个场景后,如果将这个场景所有可能用到的UI都直接放在场景中做好,由于要在进入场景时就部署好所有的UI对象,那么当UI对象较多时会碰到的问题是:1.初始化场景会产生非常明显的卡顿 ...
- Android学习笔记(二)之异步加载图片
最近在android开发中碰到比较棘手的问题,就是加载图片内存溢出.我开发的是一个新闻应用,应用中用到大量的图片,一个界面中可能会有上百张图片.开发android应用的朋友可能或多或少碰到加载图片内存 ...
- 学习笔记 - 用js判断页面是否加载完成实现代码
用document.onreadystatechange的方法来监听状态改变, 然后用document.readyState == "complete"判断是否加载完成 docum ...
- Django 学习笔记(三) --- HTML 模版加载 css、js、img 静态文件
人生苦短 ~ Tips:仅适用于 Python 3+(反正差别不大,py2 改改也能用).因为据 Python 之父 Guido van Rossum 说会在 2020 年停止对 Python 2 的 ...
- Unity学习笔记(5):动态加载Prefab
第一种方法,从Resources文件夹读取Prefab Assets/Resources文件夹是Unity中的一个特殊文件夹,在博主当前的认知里,放在这个文件夹里的Prefab可以被代码动态加载 直接 ...
- Android学习笔记_50_(转 四种加载方式详解(standard singleTop singleTask singleInstance)
Android之四种加载方式 (http://marshal.easymorse.com/archives/2950 图片) 在多Activity开发中,有可能是自己应用之间的Activity跳转,或 ...
- ThinkPHP3.2.3学习笔记4---统计ThinkPHP3.2.3加载的文件
将ThinkPHP3.2.3的入口文件index.php加入一个函数getIncludeFiles,文件内容变成如下所示: <?php // +------------------------- ...
随机推荐
- var的一些理解
var 是 variable(变量,可变物)的简写.在多种编程语言中,var 被用作定义变量的关键字,在一些操作系统中也能见到它的身影.类似object,但是效率比object高一点. var是一个局 ...
- let 和 const 关键字
看了阮老师的ES6入门再加上自己的一些理解整理出的学习笔记 let关键字 跟var相比,不会提升为全局变量,始终是块级作用域{} 注意点: 1: 不能在同一个块级作用域内声明同名变量 2: (如果当前 ...
- 一套常用的css初始化样式
@charset "UTF-8"; /*css 初始化 */ html, body, ul, li, ol, dl, dd, dt, p, h1, h2, h3, h4, h5, ...
- Evermoney -- 重新定义印象笔记编辑体验
关于印象笔记 知识管理工具自己也算用过很多了,国内的有道,为知:国外的onenote.因为印象笔记的裁剪以及搜索功能太强大了,所以最后还是选择用印象笔记了.不过印象笔记这个公司确实态度有点不敢恭维,关 ...
- java 集合框架(TreeSet操作,自动对数据进行排序,重写CompareTo方法)
/*TreeSet * treeSet存入数据后自动调用元素的compareTo(Object obj) 方法,自动对数据进行排序 * 所以输出的数据是经过排序的数据 * 注:compareTo方法返 ...
- React-Native 之 redux 与 react-redux
前言 本文 有配套视频,可以酌情观看. 文中内容因各人理解不同,可能会有所偏差,欢迎朋友们联系我讨论. 文中所有内容仅供学习交流之用,不可用于商业用途,如因此引起的相关法律法规责任,与我无关,如文中内 ...
- Linq 查询与普通查询的区别
普通:select * --1 from User(表名) as u --2 where u.Name like '%s%' --3 Linq : from User(表名) as u --1 whe ...
- Angular2快速起步——构建一个简单的应用
构建此应用,分为如下几步: 1.环境准备:安装Node.js和npm: 2.创建并配置此项目: 3.创建应用: 4.创建组件并添加到应用程序中: 5.启动应用程序: 6.定义作为该应用的宿主页面: 7 ...
- extern用法详解
1 基本解释 extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义. 另外,extern也可用来进行链接指定. 2 问题:ext ...
- nginx 高可用
1 nginx负载均衡高可用 1.1 什么是负载均衡高可用 nginx作为负载均衡器,所有请求都到了nginx,可见nginx处于非常重点的位置,如果nginx服务器宕机后端web服务将无法提供服务, ...