Codeforces 839D Winter is here【数学:容斥原理】
D. Winter is here
Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.
He has created a method to know how strong his army is. Let the i-th soldier’s strength be ai. For some k he calls i1, i2, ..., ik a clan if i1 < i2 < i3 < ... < ik and gcd(ai1, ai2, ..., aik) > 1 . He calls the strength of that clan k·gcd(ai1, ai2, ..., aik). Then he defines the strength of his army by the sum of strengths of all possible clans.
Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 (109 + 7).
Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.
The first line contains integer n (1 ≤ n ≤ 200000) — the size of the army.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000000) — denoting the strengths of his soldiers.
Print one integer — the strength of John Snow's army modulo 1000000007 (109 + 7).
3
3 3 1
12
4
2 3 4 6
39
In the first sample the clans are {1}, {2}, {1, 2} so the answer will be 1·3 + 1·3 + 2·3 = 12
题目链接:http://codeforces.com/contest/839/problem/D

下面给出AC代码:
#include<cstdio>
const int N=,P=;
int n,i,j,x,ans,po[N],a[N],f[N];
int main(){
scanf("%d",&n);
for(po[]=i=;i<=n;i++)po[i]=*po[i-]%P;
while(n--)scanf("%d",&x),a[x]++;
for(i=N-;i>;i--){
for(j=i,x=;j<N;j+=i)x+=a[j];
if(x){
f[i]=1LL*x*po[x-]%P;
for(j=i+i;j<N;j+=i)f[i]=(f[i]-f[j]+P)%P;
ans=(1LL*f[i]*i+ans)%P;
}
}
printf("%d",ans);
}
Codeforces 839D Winter is here【数学:容斥原理】的更多相关文章
- Codeforces 839D Winter is here - 暴力 - 容斥原理
Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n s ...
- Codeforces 839D Winter is here(容斥原理)
[题目链接] http://codeforces.com/contest/839/problem/D [题目大意] 给出一些数,求取出一些数,当他们的GCD大于0时,将数量乘GCD累加到答案上, 求累 ...
- CodeForces 839D - Winter is here | Codeforces Round #428 (Div. 2)
赛后听 Forever97 讲的思路,强的一匹- - /* CodeForces 839D - Winter is here [ 数论,容斥 ] | Codeforces Round #428 (Di ...
- Codeforces 839D Winter is here
链接:CF839D 题目大意 给定一个数组大小为\(n(1\leq n\leq 200000)\)的数组\(a\),满足\(1\leq a_i \leq 1000000\). 选择其中任意\(len\ ...
- hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)
hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...
- [Codeforces 1178D]Prime Graph (思维+数学)
Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...
- Codeforces 627 A. XOR Equation (数学)
题目链接:http://codeforces.com/problemset/problem/627/A 题意: 告诉你s 和 x,a + b = s a xor b = x a, b > ...
- Codeforces Beta Round #2B(dp+数学)
贡献了一列WA.. 数学很神奇啊 这个题的关键是怎么才能算尾0的个数 只能相乘 可以想一下所有一位数相乘 除0之外,只有2和5相乘才能得到0 当然那些本身带0的多位数 里面肯定含有多少尾0 就含有多少 ...
- codeforces 803C Maximal GCD(GCD数学)
Maximal GCD 题目链接:http://codeforces.com/contest/803/problem/C 题目大意: 给你n,k(1<=n,k<=1e10). 要你输出k个 ...
随机推荐
- Struts2学习---拦截器+struts的工作流程+struts声明式异常处理
这一节我们来看看拦截器,在讲这个之前我是准备先看struts的声明式异常处理的,但是我发现这个声明式异常处理就是由拦截器实现的,所以就将拦截器的内容放到了前面. 这一节的内容是这样的: 拦截器的介绍 ...
- 用过的关于css的知识
1.代码片段 让两个div并排起来显示. <div style="width:1000px; text-align:center;" id="content&quo ...
- Qt---Javascript/Qt交互、脚本化
Qt提供了对Javascript的良好支持, 如果查阅过文档你就知道Qt有两个不同的Js封装引擎: QScriptEngine QJSEngine QScriptEngine出现的比较早(自Qt4.3 ...
- UVA 10891 Game of Sum
题目大意就是有一个整数串,有两个人轮流取,每次可以取走一个前缀或后缀.两人都足够聪明,且都会使自己收益最大.求取完后先手比后手多多少. 每次我看见上面那句就会深感自己的愚笨无知. 所以来推推性质? 1 ...
- bzoj 3712: [PA2014]Fiolki
Description 化学家吉丽想要配置一种神奇的药水来拯救世界.吉丽有n种不同的液体物质,和n个药瓶(均从1到n编号).初始时,第i个瓶内装着g[i]克的第i种物质.吉丽需要执行一定的步骤来配置药 ...
- 根据图片的路径(绝对路径/相对路径都可以),生成base64的
根据图片的路径(绝对路径/相对路径都可以),生成base64的 <!DOCTYPE html> <html> <head> <meta charset=&qu ...
- Logback分别打印info日志和error日志
<?xml version="1.0" encoding="utf-8" ?><configuration> <appender ...
- Sql Server中的nvarchar(n)和varchar(n)
刚才有幸看了下 nvarchar(n)和varchar(n),感觉以前的认知有误. nvarchar(n):n指的是字符个数,范围是1-4000,存储的是可变长度的Unicode字符数据. 按字符存储 ...
- mayavi安装
Mayavi是python的一个包,提供方便的可视化方案.目前(20150809)Mayavi还没有py3的支持,以下安装环境在python 2.7.10下进行 安装Mayavi: 1. 通过pip ...
- python重试装饰器的简单实现
简单实现了一个在函数执行出现异常时自动重试的装饰器,支持控制最多重试次数,每次重试间隔,每次重试间隔时间递增. 最新的代码可以访问从github上获取 https://github.com/black ...