Problem Description
We have met so many problems on the tree, so today we will have a query problem on a set of trees. 
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!

 
Input
There are multiple test cases in our dataset. 
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially. 
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000) 
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation. 
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one. 
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts. 
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w. 
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it. 
 
Output
For each query you should output the correct answer of it. If you find this query is an illegal operation, you should output ‐1. 
You should output a blank line after each test case.
 
Sample Input
5
1 2
2 4
2 5
1 3
1 2 3 4 5
6
4 2 3
2 1 2
4 2 3
1 3 5
3 2 1 4
4 1 4
 
Sample Output
3
-1
7
 
LCT模板
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 300001
using namespace std; int p,ca,f;
inline int read(){
p=;ca=getchar();f=;
while(ca<''||ca>'') {if (ca=='-') f=-;ca=getchar();}
while(ca>=''&&ca<='') p=p*+ca-,ca=getchar();
return p*f;
}
struct na{
int y,ne;
}b[MN*];
int fa[MN],n,m,x,y,ch[MN][],top,st[MN],key[MN],ma[MN],c[MN],l[MN],r[MN],num;
bool rev[MN];
inline int max(int a,int b){return a>b?a:b;}
inline bool isroot(int x){
return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;
}
inline void pu(int x,int w){
if (!x) return;
c[x]+=w;key[x]+=w;ma[x]+=w;
}
inline void pd(int x){
if (c[x]){
pu(ch[x][],c[x]);pu(ch[x][],c[x]);
c[x]=;
}
if (rev[x]){
rev[x]=;rev[ch[x][]]^=;rev[ch[x][]]^=;
swap(ch[x][],ch[x][]);
}
}
inline void up(int x){
pd(x);pd(ch[x][]);pd(ch[x][]);
ma[x]=max(max(ma[ch[x][]],ma[ch[x][]]),key[x]);
}
inline void rot(int x){
int y=fa[x],kind=ch[y][]==x;
if(!isroot(y)) ch[fa[y]][ch[fa[y]][]==y]=x;
fa[x]=fa[y];
fa[y]=x;
ch[y][kind]=ch[x][!kind];
fa[ch[y][kind]]=y;
ch[x][!kind]=y;
up(y);up(x);
}
inline void splay(int x){
register int i;top=;st[]=x;
for (i=x;!isroot(i);i=fa[i]) st[++top]=fa[i];
for (i=top;i;i--) up(st[i]);
while(!isroot(x)){
if (isroot(fa[x])) rot(x);else
if ((ch[fa[fa[x]]][]==fa[x])==(ch[fa[x]][]==x)) rot(fa[x]),rot(x);else rot(x),rot(x);
}
}
inline void acc(int u){
int x=;
while(u){
splay(u);
ch[u][]=x;
u=fa[x=u];
}
}
inline int find(int x){
acc(x);splay(x);
while(ch[x][]) x=ch[x][];
return x;
}
inline bool qu(int x,int y){
if (find(x)==find(y)) return ;else return ;
}
inline void re(int x){
acc(x);splay(x);rev[x]^=;
}
inline void in(int x,int y){
if (qu(x,y)){printf("-1\n");return;}
re(x);acc(y);
ch[y][]=x;fa[x]=y;
}
inline void del(int x,int y){
if (!qu(x,y)||x==y){printf("-1\n");return;}
re(x);acc(y);splay(y);ch[y][]=fa[ch[y][]]=;
}
inline void change(int x,int y,int w){
if (!qu(x,y)){printf("-1\n");return;}
re(x);acc(y);splay(y);pu(y,w);
}
inline int que(int x,int y){
if (!qu(x,y)) return -;
re(x);acc(y);splay(y);
return ma[y];
}
inline void inl(int x,int y){
num++;
if (!l[x]) l[x]=num;else b[r[x]].ne=num;
b[num].y=y;b[num].ne=;r[x]=num;
}
inline void dfs(int x){
for (int i=l[x];i;i=b[i].ne)
if (!fa[b[i].y]){
fa[b[i].y]=x;
dfs(b[i].y);
}
}
int o;
int main(){
register int i;
ma[]=-1e9;
while(scanf("%d",&n)!=EOF){
num=;
memset(fa,,sizeof(fa));
memset(ch,,sizeof(ch));
memset(c,,sizeof(c));
memset(l,,sizeof(l));
memset(rev,,sizeof(rev));
for (i=;i<n;i++){
x=read();y=read();
inl(x,y);
inl(y,x);
}
for(i=;i<=n;i++) ma[i]=key[i]=read();
fa[]=;
dfs();
fa[]=;
m=read();
while(m--){
o=read();
int x,y,z;x=read();y=read();
if (o==) in(x,y);else
if (o==) del(x,y);else
if (o==) z=read(),change(y,z,x);else
printf("%d\n",que(x,y));
}
printf("\n");
}
}

HDU 4010 Query on The Trees的更多相关文章

  1. 动态树(LCT):HDU 4010 Query on The Trees

    Query on The Trees Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Othe ...

  2. HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意; 先给你一棵树,有 \(4\) 种操作: 1.如果 \(x\) 和 \(y\) 不在同一 ...

  3. HDU 4010 Query on The Trees(动态树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...

  4. HDU 4010 Query on The Trees(动态树LCT)

    Problem Description We have met so many problems on the tree, so today we will have a query problem ...

  5. HDU 4010.Query on The Trees 解题报告

    题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...

  6. HDU 4010 Query on The Trees(动态树)

    题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...

  7. hdu 4010 Query on The Trees LCT

    支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...

  8. HDOJ 4010 Query on The Trees LCT

    LCT: 分割.合并子树,路径上全部点的点权添加一个值,查询路径上点权的最大值 Query on The Trees Time Limit: 10000/5000 MS (Java/Others)   ...

  9. HDU 5957 Query on a graph

    HDU 5957 Query on a graph 2016ACM/ICPC亚洲区沈阳站 题意 \(N(N \le 10^5)\)个点,\(N\)条边的连通图. 有\(M \le 10^5\)操作: ...

随机推荐

  1. 用于文件系统的C库函数

    9/20/2017 学<LINUX C编程实战>中 1.打开 File *fopen(const char *path , const char * mode); fopen实现打开指定的 ...

  2. iOS开发--数据库管理CoreData的使用

    CoreData是iOS5后,苹果提供的原生的用于对象化管理数据并且持久化的框架.CoreData本质上是将底层数据库封装成对象进行管理.但数据库实际上只是CoreData的一个功能,并不是全部功能. ...

  3. go实例之排序

    1.默认排序 使用sort包进行排序.排序是就地排序,因此它会更改给定的切片,并且不返回新的切片. package main import "fmt" import "s ...

  4. Node: 如何控制子进程的输出

    大家知道,在一个node程序中,如果当前进程想要生成一个子进程,它可以调用child_process模块的spawn方法.spawn方法签名如下: child_process.spawn(comman ...

  5. 算法分析| 小o和小ω符号

    渐近分析的主要思想是对不依赖于机器特定常数的算法的效率进行测量,主要是因为该分析不需要实现算法并且要比较程序所花费的时间. 我们已经讨论了三个主要的渐近符号.本文我们使用以下2个渐近符号表示算法的时间 ...

  6. bzoj 2588 Count on a tree

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  7. C#中级-Windows Service程序安装注意事项

    一.前言 这周除了改写一些识别算法外,继续我的Socket服务编写.服务器端的Socket服务是以Windows Service的形式运行的. 在我完成Windows Service编写后,启动服务时 ...

  8. 【WebGL】《WebGL编程指南》读书笔记——第4章

    一.前言        今天继续第四章的学习内容,开始学习复合变换的知识. 二.正文        Example1: 复合变换 在书中,作者为我们封装了一套用于变换的矩阵对象:Matrix4对象.它 ...

  9. Java自己动手写连接池二

    读取数据库文件,来操作: package com.kama.cn; import java.sql.Connection;import java.sql.DriverManager;import ja ...

  10. ABP .Net Core 日志组件集成使用NLog

    一.说明 NLog介绍和使用说明官网:http://nlog-project.org/ NLog和Log4net对比:https://www.cnblogs.com/qinjin/p/5134982. ...