HDU.5985.Lucky Coins(概率DP)
\(Description\)
有n(n<=10)种硬币,已知每种硬币的数量和它抛一次正面朝上的概率pi。进行如下过程:每次抛一次所有硬币,将正面朝下的硬币去掉。重复该过程直到只剩一种硬币或是没有硬币。
如果结束时还剩下一种硬币,那称它是 \(LuckyCoin\)。求每种硬币成为 \(LuckyCoin\) 的概率。
\(Solution\)
我们只需要枚举在第j轮,硬币i死亡(这个词形象233),其它硬币在第j轮之前死亡的概率。
由给出的概率及六位小数可以看出,枚举到100轮就很够了。于是可以dp计算每种硬币在第j轮死亡的概率,然后前缀和一下,枚举轮数。(据说复杂度有点高?不太懂,不深究了...)
\(f[i][j]\) 表示在第j轮 硬币i死亡的概率,那么 \(f[i][j] = (1-p_i^j)^{num_i}\) (\(num_i\)枚硬币都挂掉才死亡;算存活概率的话好像因为有多个很不好算)
\(g[i][j]\) 表示在第j轮之后 硬币i仍存活的概率,那么 \(g[i][j] = 1 - f[i][j]\).
为了不重复统计(在第j+1轮i存活,但却计算在第j轮之前就死亡的所有硬币),对于每轮我们用i在j轮还存活,j+1轮i全部挂掉的概率,即 \(g[i][j]-g[i][j+1]\).
\]
我想问为什么存下 \(g[i][j]=1-f[i][j]\),计算用 \(g[][]\)就对,而不存直接用 \(1-f[][]\)这个式子答案怎么需要+1。。(精度?)
//0MS 1564K
#include <cstdio>
#include <cctype>
#define gc() getchar()
const int N=12;
int n,num[N];
double p[N],f[N][103],g[N][103];
inline double FP(double x,int k)//第一次写double快速幂。。
{
double t=1.0;
for(; k; k>>=1,x=x*x) if(k&1) t=t*x;
return t;
}
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1; i<=n; ++i) scanf("%d%lf",&num[i],&p[i]);
if(n==1) {puts("1.000000"); continue;}
for(int i=1; i<=n; ++i)
{
double pw=p[i];
for(int j=1; j<100; ++j,pw*=p[i]) f[i][j]=FP(1.0-pw,num[i]),g[i][j]=1-f[i][j];
}
for(int i=1; i<=n; ++i)
{
double res=0;
for(int j=1; j<100; ++j)
{
double pro=1.0;
for(int k=1; k<=n; ++k) if(k!=i) pro*=f[k][j];
res += (f[i][j+1]-f[i][j])*pro;
// res += (1-f[i][j]-1+f[i][j+1])*pro;
// res += (g[i][j]-g[i][j+1])*pro;
}
printf("%f%c",res+1,i==n?'\n':' ');
}
}
return 0;
}
HDU.5985.Lucky Coins(概率DP)的更多相关文章
- HDU 5985 Lucky Coins 数学
Lucky Coins 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5985 Description Bob has collected a lot ...
- HDU5985 Lucky Coins 概率dp
题意:给你N种硬币,每种硬币有Si个,有Pi 概率朝上,每次抛所有硬币抛起,所有反面的拿掉,问每种硬币成为最后的lucky硬币的概率. 题解:都知道是概率dp,但是模拟赛时思路非常模糊,很纠结,dp[ ...
- HDU 5985 Lucky Coins(概率)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5985 题意:有多种类型的硬币,每种类型的硬币都有一定的数量,现在每次抛硬币,除去朝下的硬币,知道最后 ...
- HDU 4089 Activation(概率DP)(转)
11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况. 像概率dp,公式推出来就很容易写 ...
- atcoderI - Coins ( 概率DP)
I - Coins Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement Let NN b ...
- 2017 ICPC乌鲁木齐 A Coins 概率dp
Coins 题意:一开始所有n个硬币都是反面朝上的,每次必须拿k个来抛,抛的人足够聪明,问m次之后向上的硬币的期望. 首先说了这个足够聪明的意思,就是只要向反面的有k个就不会sb地去拿向正面的来抛,想 ...
- 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)
题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- HDU - 5001 Walk(概率dp+记忆化搜索)
Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...
随机推荐
- Object类型的怎么判断空值
例如 Object result; 我直接这样是不行的 if(result==null) //这样是错的 ... 要这样判断 if(result == System.DBNull.Value) //这 ...
- vim文本删除方法 Linux
1,先打开某个文件: vim filename 2,转到文件结尾 在命令模式输入 G 3,转到10行 在命令模式输入 10G 4,删除所有内容:先用G 转到文件尾,然后使用下面命令: :1, .d ...
- Solr记录-solr检索和查询数据
Solr检索数据 在本章中,我们将讨论如何使用Java Client API检索数据.假设有一个名为sample.csv的.csv文档,其中包含以下内容. 001,9848022337,Hyderab ...
- Linux遇到的问题(一)Ubuntu报“xxx is not in the sudoers file.This incident will be reported” 错误解决方法
提示错误信息 www@iZ236j3sofdZ:~$ ifconfig Command 'ifconfig' is available in '/sbin/ifconfig' The command ...
- Java入门系列(九)Java API
String,StringBuilder,StringBuffer三者的区别 1.首先说运行速度,或者说是执行速度 在这方面运行速度快慢为:StringBuilder > StringBuffe ...
- grep 正则表达
常见的 grep 正则表达参数 -c # 显示匹配到得行的数目,不显示内容 -h # 不显示文件名 -i # 忽略大小写 -l # 只列出匹配行所在文件的文件名 -n # 在每一行中加上相对行号 -s ...
- excel中数字如何自动换行
1. excel中点击单元格右键,选择“设置单元格格式” -- “对齐”选项卡. 2. 先取消“自动换行”,勾选上“缩小字体填充”. 3.再选择“自动换行”即可实现数字的自动换行.
- lucene中文分词——(四)
1.分析器的执行过程:
- 【技巧总结】理解XXE从基础到盲打
原文:http://agrawalsmart7.com/2018/11/10/Understanding-XXE-from-Basic-to-Blind.html 这篇文章中将讨论以下问题. XXE是 ...
- 【Pyhon】获取文件MIME类型,根据文件类型自定义文件后缀
场景 下载样本,都是MD5命名的无后缀文件,需要自己手动查询然后修改文件后缀. 根据文件类型自定义后缀可以很方便地根据后缀判断用什么工具分析. 使用说明 libmagic 地址:https://pyp ...