题目链接

\(Description\)

有n(n<=10)种硬币,已知每种硬币的数量和它抛一次正面朝上的概率pi。进行如下过程:每次抛一次所有硬币,将正面朝下的硬币去掉。重复该过程直到只剩一种硬币或是没有硬币。

如果结束时还剩下一种硬币,那称它是 \(LuckyCoin\)。求每种硬币成为 \(LuckyCoin\) 的概率。

\(Solution\)

我们只需要枚举在第j轮,硬币i死亡(这个词形象233),其它硬币在第j轮之前死亡的概率。

由给出的概率及六位小数可以看出,枚举到100轮就很够了。于是可以dp计算每种硬币在第j轮死亡的概率,然后前缀和一下,枚举轮数。(据说复杂度有点高?不太懂,不深究了...)

\(f[i][j]\) 表示在第j轮 硬币i死亡的概率,那么 \(f[i][j] = (1-p_i^j)^{num_i}\) (\(num_i\)枚硬币都挂掉才死亡;算存活概率的话好像因为有多个很不好算)

\(g[i][j]\) 表示在第j轮之后 硬币i仍存活的概率,那么 \(g[i][j] = 1 - f[i][j]\).

为了不重复统计(在第j+1轮i存活,但却计算在第j轮之前就死亡的所有硬币),对于每轮我们用i在j轮还存活,j+1轮i全部挂掉的概率,即 \(g[i][j]-g[i][j+1]\).

\[Ans[i] = \sum_{j=1}^{100}(g[i][j]-g[i][j+1])*\prod_{k=1,k!=i}^nf[k][j]
\]

我想问为什么存下 \(g[i][j]=1-f[i][j]\),计算用 \(g[][]\)就对,而不存直接用 \(1-f[][]\)这个式子答案怎么需要+1。。(精度?)

//0MS 1564K
#include <cstdio>
#include <cctype>
#define gc() getchar()
const int N=12; int n,num[N];
double p[N],f[N][103],g[N][103]; inline double FP(double x,int k)//第一次写double快速幂。。
{
double t=1.0;
for(; k; k>>=1,x=x*x) if(k&1) t=t*x;
return t;
} int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1; i<=n; ++i) scanf("%d%lf",&num[i],&p[i]);
if(n==1) {puts("1.000000"); continue;}
for(int i=1; i<=n; ++i)
{
double pw=p[i];
for(int j=1; j<100; ++j,pw*=p[i]) f[i][j]=FP(1.0-pw,num[i]),g[i][j]=1-f[i][j];
}
for(int i=1; i<=n; ++i)
{
double res=0;
for(int j=1; j<100; ++j)
{
double pro=1.0;
for(int k=1; k<=n; ++k) if(k!=i) pro*=f[k][j];
res += (f[i][j+1]-f[i][j])*pro;
// res += (1-f[i][j]-1+f[i][j+1])*pro;
// res += (g[i][j]-g[i][j+1])*pro;
}
printf("%f%c",res+1,i==n?'\n':' ');
}
}
return 0;
}

HDU.5985.Lucky Coins(概率DP)的更多相关文章

  1. HDU 5985 Lucky Coins 数学

    Lucky Coins 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5985 Description Bob has collected a lot ...

  2. HDU5985 Lucky Coins 概率dp

    题意:给你N种硬币,每种硬币有Si个,有Pi 概率朝上,每次抛所有硬币抛起,所有反面的拿掉,问每种硬币成为最后的lucky硬币的概率. 题解:都知道是概率dp,但是模拟赛时思路非常模糊,很纠结,dp[ ...

  3. HDU 5985 Lucky Coins(概率)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5985 题意:有多种类型的硬币,每种类型的硬币都有一定的数量,现在每次抛硬币,除去朝下的硬币,知道最后 ...

  4. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  5. atcoderI - Coins ( 概率DP)

    I - Coins Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement Let NN b ...

  6. 2017 ICPC乌鲁木齐 A Coins 概率dp

    Coins 题意:一开始所有n个硬币都是反面朝上的,每次必须拿k个来抛,抛的人足够聪明,问m次之后向上的硬币的期望. 首先说了这个足够聪明的意思,就是只要向反面的有k个就不会sb地去拿向正面的来抛,想 ...

  7. 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)

    题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...

  8. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  9. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

随机推荐

  1. mysql 不同引擎的比较

    mysql 支持的默认引擎是InnoDB,其他的常用引擎包括MyISAM等,那么他们有什么差别呢. 首先执行 show engines; 来查看数据库当前支持的引擎. 可以看到mysql支持这么多不同 ...

  2. bzoj千题计划195:bzoj2844: albus就是要第一个出场

    http://www.lydsy.com/JudgeOnline/problem.php?id=2844 题意:给定 n个数,把它的所有子集(可以为空)的异或值从小到大排序得到序列 B,请问 Q 在  ...

  3. JMS学习(五)--ActiveMQ中的消息的持久化和非持久化 以及 持久订阅者 和 非持久订阅者之间的区别与联系

    一,消息的持久化和非持久化 ①DeliveryMode 这是传输模式.ActiveMQ支持两种传输模式:持久传输和非持久传输(persistent and non-persistent deliver ...

  4. java学习第03天(运算符、语句)

    5.运算符 (1)算数运算符 //算数运算符:+ - * / %(取余) //++ --(自增,就是在原有数据基础上+1,再赋给原有数据) ///int x = 6370; //x = x/1000* ...

  5. js基础知识:闭包,事件处理,原型

    闭包:其实就是js代码在执行的时候会创建变量对象的一个作用域链,标识符解析的时候会沿着作用域链一级一级的网上搜索,最后到达全局变量停止.所以某个函数可以访问外层的局部变量和全局变量,但是访问不了里层的 ...

  6. 用U盘安装 win7 ”找不到任何设备驱动程序“ 和 系统出现 windows boot manager 解决方案

    用U盘安装win7系统时,系统交替的出现了如下的2个错误,捣鼓了半天,记录下来: 问题1描述: 安装win7时  ”找不到任何设备驱动程序“  问题2描述: 安装win7时,用U盘启动后, 系统出现 ...

  7. 20165230 2017-2018-2《Java程序设计》课程总结

    20165230 2017-2018-2<Java程序设计>课程总结 一.作业链接汇总 每周作业链接 预备作业1:我期望的师生关系 预备作业2:做中学learning by doing个人 ...

  8. 环形缓冲区-模仿linux kfifo【转】

    转自:https://blog.csdn.net/vertor11/article/details/53741681 struct kfifo{ uint8_t *buffer; uint32_t i ...

  9. 014_mac下的端口查看

    一. 使用netstat去过滤listen效果不怎么理想. $ netstat -an|grep -i --color "listen" tcp6 0 0 ::1.5601 *.* ...

  10. 最完整的PS快捷键大全(绝对经典)

    快速恢复默认值 有些不擅长Photoshop的朋友为了调整出满意的效果真是几经周折,结果发现还是原来的默认效果最好,这下傻了眼,后悔不该当初呀!怎么恢复到默认值呀?试着轻轻点按选项栏上的工具图标,然后 ...