树上莫队共有三种写法:

  1.按DFS序列分块,和普通莫队类似。常数大,不会被卡。

  2.按块状树的方式分块。常数小,会被菊花图卡到O(n)。

  3.按[BZOJ1086]王室联邦的方式分块。常数小,不会被卡。唯一的缺点是较抽象,一个块可能是不连通的。

权衡一下当然还是写第三种做法,具体看代码。

然后还有一个问题,手动模拟莫队移动左右端点指针的过程,会发现LCA处较难处理,它常常是跟其它点反着的。于是我们每次移指针的时候都忽略LCA,最后询问的时候加上LCA求解答案再减去LCA。再模拟会发现,所有方案都可以处理了。

以及要注意每个询问如果左端点所在块编号比右端点所在块大则需要交换左右端点。询问的排序方式是:若两端点不在同一块则按块编号排序,否则按DFS序排序。也就是按(bel[i],dfn[i])的双关键字排序。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=;
int n,m,B,u,v,tim,top,tot,a[N],stk[N],b[N],dep[N],fa[N][];
int cnt,res,rt,vis[N],ans[N],dfn[N],s[N],h[N],to[N],nxt[N];
struct P{ int l,r,x,y,id; }q[N]; bool cmp(const P &x,const P &y){ return b[x.l]==b[y.l] ? dfn[x.r]<dfn[y.r] : b[x.l]<b[y.l]; }
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void dfs(int x){
dfn[x]=++tim; int tmp=top;
rep(i,,) fa[x][i]=fa[fa[x][i-]][i-];
For(i,x) if ((k=to[i])!=fa[x][]){
fa[k][]=x; dep[k]=dep[x]+; dfs(k);
if (top-tmp>=B){ ++tot; while (top!=tmp) b[stk[top--]]=tot; }
}
stk[++top]=x;
} int lca(int x,int y){
if (dep[x]<dep[y]) swap(x,y);
int t=dep[x]-dep[y];
for (int i=; ~i; i--) if (t&(<<i)) x=fa[x][i];
if (x==y) return x;
for (int i=; ~i; i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][];
} void upd(int x){
if (vis[x]){ s[a[x]]--; if (!s[a[x]]) res--; }
else { s[a[x]]++; if (s[a[x]]==) res++; }
vis[x]^=;
} void work(int x,int y){
for (; x!=y; upd(x),x=fa[x][])
if (dep[x]<dep[y]) swap(x,y);
} int main(){
freopen("bzoj3757.in","r",stdin);
freopen("bzoj3757.out","w",stdout);
scanf("%d%d",&n,&m); B=sqrt(n);
rep(i,,n) scanf("%d",&a[i]);
rep(i,,n){
scanf("%d%d",&u,&v);
if (!u || !v) { rt=u+v; continue; }
add(u,v); add(v,u);
}
dfs(rt);
while (top) b[stk[top--]]=tot;
rep(i,,m){
scanf("%d%d%d%d",&q[i].l,&q[i].r,&q[i].x,&q[i].y); q[i].id=i;
if (b[q[i].l]>b[q[i].r]) swap(q[i].l,q[i].r);
}
sort(q+,q+m+,cmp);
int L=rt,R=rt;
rep(i,,m){
work(L,q[i].l); work(R,q[i].r); L=q[i].l; R=q[i].r;
int f=lca(L,R); upd(f);
ans[q[i].id]=res-(int)(q[i].x!=q[i].y&&s[q[i].x]&&s[q[i].y]); upd(f);
}
rep(i,,m) printf("%d\n",ans[i]);
return ;
}

[BZOJ3757]苹果树(树上莫队)的更多相关文章

  1. 【BZOJ 3735】苹果树 树上莫队(树分块+离线莫队+鬼畜的压行)

    2016-05-09 UPD:学习了新的DFS序列分块,然后发现这个东西是战术核导弹?反正比下面的树分块不知道要快到哪里去了 #include<cmath> #include<cst ...

  2. BZOJ.3757.苹果树(树上莫队)

    题面链接 /* 代码正确性不保证..(不过交了SPOJ没WA T了最后一个点) 在DFS序做莫队 当一个点不是另一个点的LCA时,需要加上它们LCA的贡献 */ #include <cmath& ...

  3. 【BZOJ-3757】苹果树 块状树 + 树上莫队

    3757: 苹果树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1305  Solved: 503[Submit][Status][Discuss] ...

  4. BZOJ3757: 苹果树【树上莫队】

    Description ​ 神犇家门口种了一棵苹果树.苹果树作为一棵树,当然是呈树状结构,每根树枝连接两个苹果,每个苹果都可以沿着一条由树枝构成的路径连到树根,而且这样的路径只存在一条.由于这棵苹果树 ...

  5. 2018.09.16 bzoj3757: 苹果树(树上莫队)

    传送门 一道树上莫队. 先用跟bzoj1086一样的方法给树分块. 分完之后就可以莫队了. 但是两个询问之间如何转移呢? 感觉很难受啊. 我们定义S(u,v)" role="pre ...

  6. 【BZOJ3757】苹果树(树上莫队)

    点此看题面 大致题意: 每次问你树上两点之间路径中有多少种颜色,每次询问可能会将一种颜色\(a\)看成\(b\). 树上莫队 这题是一道树上莫队板子题. 毕竟求区间中有多少种不同的数是莫队算法的经典应 ...

  7. 树上莫队 wowow

    构建:像线性的莫队那样,依旧是按sqrt(n)为一块分块. int dfs(int x){ ; dfn[x]=++ind; ;i<=;i++) if (bin[i]<=deep[x]) f ...

  8. [BZOJ 3052] [wc2013] 糖果公园 【树上莫队】

    题目链接:BZOJ - 3052 题目分析 这道题就是非常经典的树上莫队了,并且是带修改的莫队. 带修改的莫队:将询问按照 左端点所在的块编号为第一关键字,右端点所在的块为第二关键字,位于第几次修改之 ...

  9. spoj COT2 - Count on a tree II 树上莫队

    题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的,  受益匪浅.. #include <iostream> #include < ...

随机推荐

  1. bzoj千题计划289:bzoj 2707: [SDOI2012]走迷宫

    http://www.lydsy.com/JudgeOnline/problem.php?id=2707 dp[i] 表示从点i到终点的期望步数 dp[i]= Σ (dp[j]+1)/out[i] j ...

  2. 经典设计模式-iOS的实现

    最近看了<HeadFirst 设计模式>这本书,给组内伙伴准备一次分享,把这次分享记录下来,有需要的可以看看. 这本书主要介绍了四人帮23种经典设计模式中的的14种,也是常用的几种.看完这 ...

  3. python中的__call__

    如果python中的一个类定义了 __call__ 方法,那么这个类它的实例就可以作为函数调用,也就是实现了 () 运算符,即可调用对象协议 下面是一个简单的例子: class TmpTest: de ...

  4. [转]LaTex常用数学符号整理

    转载自 http://blog.csdn.net/ying_xu/article/details/51240291 (自己保存方便查阅,侵删) 另一个网站 Markdown 添加 Latex 数学公式 ...

  5. PyQT5 No module named ‘PyQt5.QtWebEngineWidgets’

    PyQT5查找不到模块QtWebEngineWidgets pip install pyqt5==5.10.1 或 安装64位的Pyhon解释器

  6. spfa求图的最大流

    题目链接: https://vjudge.net/contest/255738#problem/B AC代码: #include <iostream> #include<vector ...

  7. 『记录』Android参考资料

    欢迎留言推荐好的教程.资料.博客及作者等. 『记录』Android参考资料 1.前期环境 Android Studio使用Git Android Studio快捷键总结 Android Studio及 ...

  8. 【前端开发】移动端适配方案js,rem单位转换,640设计稿20px=1rem

    ! function() { var style = document.createElement("STYLE"), docEl = document.documentEleme ...

  9. mkfs

    mkfs 命令  linux格式化磁盘命令 指令:mkfs 使用权限 : 超级使用者 使用方式 : mkfs [-V] [-t fstype] [fs-options] filesys [blocks ...

  10. 003_Java笔记3:Eclipse添加jar包

    本文以jedis包为例,演示Eclipse如何添加和使用jar包.   1 建立一个名为ImportJarDemo的Java Project.在该工程下建立一个libs的文件夹. 2 将下载的jedi ...