计数dp
计数dp
计数类的$dp$没做过几个,所以之前都放到"思维"标签下了,后来发现原来这属于一类问题啊...搬过来了.
管道取珠:https://www.lydsy.com/JudgeOnline/problem.php?id=1566
题意概述:

有这样的两根管道接在一起,上边有$n$个珠子,下边有$m$个,每次可以从上或下取出一个(向右滑出去),只会有两种颜色的珠子,求不同的取珠序列的总数的平方和.(只要两个取出序列的珠子颜色都相同就视为相同的序列,不用考虑上下).$n,m<=300$
$shallwe$:完全可以作为$NOIP$ $D2T1$.
既然要求平方和,是不是要先求每种序列的方案数再平方求和呢?然而这样做是做不出来的.
出题人怎么说就怎么做是没有前途的...这里有一个挺神奇的转化:视为两个人各拿一个这样的管道取珠,当两个人取到的方案完全相同时答案$+1$,考虑这样做为什么是对的.比如取出某个序列有$a$种方法,那么这第一个人从这$a$种中任取一种,第二个人就有$a$种方法取出与之相同的序列,也就是平方了.太奇妙了.
这个转移其实非常简单,考虑一个最普通的:$dp[i][j][k][z]$表示第一个人在上边选了$i$个,下面选了$j$个,第二个人在上边选了$k$个,下边选了$z$个的方案数.既然序列要相同,那两个人取的珠子总数应该是相同的,可以直接删掉任意一维.现在时间复杂度已经能过了,但是空间复杂度又过不了了...显然需要用一个滚动数组,但是这样的状态没有办法滚动,所以重新设计:$dp[s][i][k]$,为了方便理解直接沿用了上边的下标名称,表示共取了$s$个,第一个人在上边取了$i$个,第二个人在上边取了$j$个的方案数.此时可以发现$s$每次只会增加$1$,滚动掉.
# include <cstdio>
# include <iostream>
# include <queue>
# include <cstring>
# include <string>
# define R register int
# define ll long long
# define mod using namespace std; const int maxn=;
int n,m;
char s[maxn];
int a[maxn],b[maxn];
int dp[][maxn][maxn]; int ad (int a,int b)
{
a=a+b;
if(a>=mod) a-=mod;
return a;
} int main()
{
scanf("%d%d",&n,&m);
scanf("%s",s+);
for (R i=n;i>=;--i)
if(s[i]=='A') a[n-i+]=;
scanf("%s",s+);
for (R i=m;i>=;--i)
if(s[i]=='A') b[m-i+]=;
dp[][][]=;
for (R s=;s<=n+m;++s)
{
int las=s&;
int no=las^;
memset(dp[no],,sizeof(dp[no]));
for (R i=;i<=n;++i)
for (R k=;k<=n;++k)
{
int j=s-i,z=s-k,x=dp[las][i][k];
if(!x) continue;
if(a[i+]==a[k+]) dp[no][i+][k+]=ad(dp[no][i+][k+],x);
if(a[i+]==b[z+]) dp[no][i+][k]=ad(dp[no][i+][k],x);
if(b[j+]==a[k+]) dp[no][i][k+]=ad(dp[no][i][k+],x);
if(b[j+]==b[z+]) dp[no][i][k]=ad(dp[no][i][k],x);}
}
printf("%d",dp[(n+m)&][n][n]);
return ;
}
管道取珠
中国象棋:https://www.lydsy.com/JudgeOnline/problem.php?id=1801
题意概述:在一个$n \times m$的棋盘上放任意多个炮,使得它们不能相互攻击,求方案数.$n,m<=100$
前置知识:炮的攻击方式
一开始以为是炮可以攻击同一行和同一列,然而并不是..."马后炮"了解一下?
转化题目:每一行,每一列不能出现超过$2$个棋子的方案数.
一开始想到了状压,但是状压压不了$100$位,即使用$bitset$强行压起来了也没法转移.后来发现具体是哪一行有两个棋子或者一个棋子并不重要,我们只需要知道有多少列有两个、一个、没有棋子就可以转移了,因为每列的本质其实是一样的。$dp[i][j][k]$表示前$i$行中$j$列有一个棋子,$k$列有两个棋子的方案数,转移比较麻烦.
·如果这一行一个都不放,可以直接继承上面的状态;
·如果放一个,可以放到已有一个的地方,那么这一行数量加一,方案数为$(j+1) \times dp[i-1][j+1][k-1]$,也可以放到本来为空的地方$dp[i-1][j-1][k] \times (m-(j-1)-k)$;
·如果放两个,可以都放到已有一个的地方$dp[i-1][j+2][k-2] \times c[j+2][2]$,也可以都放到空位上$dp[i-1][j-2][k] \times c[m-(j-2)-k][2]$,也可以一个放到已有一个的地方,另一个放到空位上$dp[i-1][j][k-1] \times (m-j-(k-1)) \times j$。($c$数组中是组合数)
# include <cstdio>
# include <iostream>
# include <cstring>
# define ll long long
# define R register int
# define mod using namespace std; int n,m,ans;
long long dp[][][];
int c[][]; int ad (int i,int j,int k)
{
long long a=;
a=dp[i-][j][k]%mod;
if(j) a=(a+dp[i-][j-][k]*(m-(j-)-k))%mod;
if(k) a=(a+(dp[i-][j+][k-]*(j+)))%mod;
if(j>=) a=(a+(dp[i-][j-][k]*c[m-(j-)-k][]))%mod;
if(k) a=(a+(dp[i-][j][k-]*(m-j-(k-))%mod*j))%mod;
if(k>=) a=(a+(dp[i-][j+][k-]*c[j+][]))%mod;
return a;
} int main()
{
scanf("%d%d",&n,&m);
dp[][][]=;
c[][]=;
for (R i=;i<=m+;++i)
{
c[i][]=;
for (R j=;j<=;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
for (R i=;i<=n;++i)
for (R j=;j<=m;++j)
for (R k=;k+j<=m;++k)
dp[i][j][k]=ad(i,j,k);
for (R i=;i<=m;++i)
for (R j=;j+i<=m;++j)
ans=(ans+dp[n][i][j])%mod;
printf("%d",ans);
return ;
}
中国象棋
计数dp的更多相关文章
- HDU5800 To My Girlfriend 背包计数dp
分析:首先定义状态dp[i][j][s1][s2]代表前i个物品中,选若干个物品,总价值为j 其中s1个物品时必选,s2物品必不选的方案数 那么转移的时候可以考虑,第i个物品是可选可可不选的 dp[i ...
- CodeForces 176B Word Cut (计数DP)
Word Cut Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit St ...
- [DP之计数DP]
其实说实在 我在写这篇博客的时候 才刚刚草了一道这样类型的题 之前几乎没有接触过 接触过也是平时比赛的 没有系统的做过 可以说0基础 我所理解的计数dp就是想办法去达到它要的目的 而且一定要非常劲非常 ...
- HDU4815/计数DP
题目链接[http://acm.hdu.edu.cn/showproblem.php?pid=4815] 简单说一下题意: 有n道题,每到题答对得分为a[ i ],假如A不输给B的最小概率是P,那么A ...
- HDU 6377 度度熊看球赛 (计数DP)
度度熊看球赛 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- [SDOI2010]地精部落[计数dp]
题意 求有多少长度为 \(n\) 的排列满足 \(a_1< a_2> a_3 < a_4 \cdots\) 或者 $a_1> a_2 < a_3 > a_4\cdo ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- 【AtCoder】AGC022 F - Leftmost Ball 计数DP
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
随机推荐
- 一个大区域输入框应该使用textarea
- .netcore入门
开发环境:windows 编辑器: Visual Studio Code 环境安装: .Net Core 1.1 SDK https://www.microsoft.com/net/co ...
- C#中,Json的序列化和反序列化的几种方式总结
在这篇文章中,我们将会学到如何使用C#,来序列化对象成为Json格式的数据,以及如何反序列化Json数据到对象. 什么是JSON? JSON (JavaScript Object Notation) ...
- java锁的简化
java使用单独的锁对象的代码展示 private Lock bankLock = new ReentrantLock(); //因为sufficientFunds是锁创建的条件所以称其为条件对象也叫 ...
- JAVA设计模式详解(六)----------状态模式
各位朋友,本次LZ分享的是状态模式,在这之前,恳请LZ解释一下,由于最近公司事情多,比较忙,所以导致更新速度稍微慢了些(哦,往后LZ会越来越忙=.=). 状态模式,又称状态对象模式(Pattern o ...
- Django Rest Framework 请求流程
用户请求到django,首先经过wsgi,中间件,然后到url路由系统,执行视图类中继承APIView执行as_view方法,在源码中可以看到VPIView继承了django的View类,通过supe ...
- python生成器简单了解
1.什么是生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素, ...
- vue.js自定义指令详解
写在文本前:相信在做vue的项目,你肯定接触了指令,我们常用vue内置的一些指令,比如v-model,v-text,v-if,v-show等等,但是这些内置指令不在本文的讲解范畴,本文想说的是其自定义 ...
- AngularJS学习之 登录表单 清爽验证(边学边更新)
注册过程的确好多需要验证的,但是注册成功之后的登录就简单多了, 只要用户 输入 用户名和密码, ajax向后台提交登录请求, 根据返回的结果确定用户名或者密码是否正确即可登录. 所以这个登录表单的验证 ...
- TensorFlow数据读取方式:Dataset API
英文详细版参考:https://www.cnblogs.com/jins-note/p/10243716.html Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服 ...