bzoj千题计划209:bzoj1185: [HNOI2007]最小矩形覆盖
http://www.lydsy.com/JudgeOnline/problem.php?id=1185
题解去看它
http://www.cnblogs.com/TheRoadToTheGold/p/8253800.html
精度真是卡的我醉生梦死,w(゚Д゚)w O(≧口≦)O
bzoj改成long double 就过了
洛谷仍处于
输出x.99999,答案输出x+1.00000
输出-0.00000,答案输出0.00000
救命啊~~~~(>_<)~~~~
来自大佬的建议:输出double时用%f
#include<cmath>
#include<cstdio>
#include<algorithm> #define N 50001 using namespace std; const long double eps=1e-; int dcmp(long double x)
{
if(fabs(x)<eps) return ;
return x< ? - : ;
} struct Point
{
long double x,y; Point(long double x=,long double y=) : x(x),y(y) { } bool operator < (Point p) const
{
if(!dcmp(x-p.x)) return y<p.y;
return x<p.x;
} bool operator == (Point p) const
{
return !dcmp(x-p.x) && !dcmp(y-p.y);
}
}; typedef Point Vector; Point P[N],C[N]; Point AnsP[]; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double q) { return Vector(A.x*q,A.y*q); } long double Cross(Vector A,Vector B)
{
return A.x*B.y-A.y*B.x;
} long double Area2(Point A,Point B,Point D)
{
return Cross(B-A,D-A);
} long double Dot(Vector A,Vector B)
{
return A.x*B.x+A.y*B.y;
} long double Length(Vector A)
{
return sqrt(Dot(A,A));
} int ConvexHull(Point *p,int n,Point *c)
{
sort(p,p+n);
n=unique(p,p+n)-p;
int m=;
for(int i=;i<n;++i)
{
while(m> && Cross(c[m-]-c[m-],p[i]-c[m-])<=) m--;
c[m++]=p[i];
}
int k=m;
for(int i=n-;i>=;--i)
{
while(m>k && Cross(c[m-]-c[m-],p[i]-c[m-])<=) m--;
c[m++]=p[i];
}
m--;
return m;
} long double getdis(Point A,Point B)
{
return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
} void RotatingCaliper(Point *c,int m)
{
long double AnsArea=1e20,AnsPeri=1e20;
int q=,l=,r=;
long double d,h,w,rw;
for(int p=;p<m;++p)
{
while(fabs(Cross(c[p]-c[p+],c[q+]-c[p+]))>fabs(Cross(c[p]-c[p+],c[q]-c[p+]))) q=(q+)%m;
while(dcmp(Dot(c[p+]-c[p],c[r+]-c[r]))>)
r=(r+)%m;
if(!l) l=q;
while(dcmp(Dot(c[p+]-c[p],c[l+]-c[l]))<)
l=(l+)%m;
d=Length(c[p+]-c[p]);
h=fabs(Area2(c[p],c[p+],c[q]))/d;
w=Dot(c[p+]-c[p],c[r]-c[l])/d;
rw=Dot(c[r]-c[p],c[p+]-c[p])/d;
if(w*h<AnsArea)
{
AnsArea=w*h;
AnsP[]=c[p]+(c[p+]-c[p])*(rw/d);
AnsP[]=AnsP[]+(c[r]-AnsP[])*(h/getdis(c[r],AnsP[]));
AnsP[]=AnsP[]+(c[q]-AnsP[])*(w/getdis(c[q],AnsP[]));
AnsP[]=AnsP[]+(c[l]-AnsP[])*(h/getdis(c[l],AnsP[]));
}
}
double out=AnsArea;
printf("%.5lf\n",out);
} bool less(Point A,Point B)
{
if(!dcmp(A.y-B.y)) return A.x<B.x;
return A.y<B.y;
} int main()
{
int n,m;
scanf("%d",&n);
double x,y;
for(int i=;i<n;++i)
{
scanf("%lf%lf",&x,&y);
P[i]=Point(x,y);
}
m=ConvexHull(P,n,C);
RotatingCaliper(C,m);
int s=;
for(int i=;i<;++i)
if(less(AnsP[i],AnsP[s])) s=i;
double outx,outy;
for(int i=;i<;++i)
{
if(!dcmp(AnsP[(i+s)%].x)) AnsP[(i+s)%].x=;
if(!dcmp(AnsP[(i+s)%].y)) AnsP[(i+s)%].y=;
outx=AnsP[(i+s)%].x+eps;
outy=AnsP[(i+s)%].y+eps;
printf("%.5lf %.5lf\n",outx,outy);
}
}
bzoj千题计划209:bzoj1185: [HNOI2007]最小矩形覆盖的更多相关文章
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- BZOJ1185 [HNOI2007]最小矩形覆盖 【旋转卡壳】
题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前, ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
- 2018.10.18 bzoj1185: [HNOI2007]最小矩形覆盖(旋转卡壳)
传送门 不难看出最后的矩形一定有一条边与凸包某条边重合. 因此先求出凸包,然后旋转卡壳求出当前最小矩形面积更新答案. 代码: #include<bits/stdc++.h> #define ...
- BZOJ1185 : [HNOI2007]最小矩形覆盖
求出凸包后,矩形的一条边一定与凸包的某条边重合. 枚举每条边,求出离它最远的点和离它最左最右的点,因为那三个点是单调变化的,所以复杂度为$O(n)$. 注意精度. #include<cstdio ...
- BZOJ1185 HNOI2007 最小矩形覆盖 凸包、旋转卡壳
传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这 ...
- 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)
[BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
随机推荐
- 设计模式 笔记 解释器模式 Interpreter
//---------------------------15/04/26---------------------------- //Interpreter 解释器模式----类行为型模式 /* 1 ...
- stl源码剖析 详细学习笔记heap
// // heap.cpp // 笔记 // // Created by fam on 15/3/15. // // //---------------------------15/03/15 ...
- Docker_容器化gitlab
Docker部署接口自动化持续集成环境第一步,容器化一个Gitlab! 1:开放防火墙端口 sudo yum install curl openssh-server openssh-clients p ...
- YQCB冲刺第二周第四天
站立会议 任务看板 今天的任务为实现精准查账的功能. 昨天的任务为实现查看消费明细的功能. 遇到的问题为忘记在记账记录的表中添加用户名一栏,这样导致不同用户登录时查看消费明细会显示所有用户的所有记录.
- 第一个sprint与第二个sprint阶段总结
总体: 在第一个sprint中,团队里的小伙伴都在积极努力的配合,基本按照流程做了一次Sprint,大家一块进行计划会议,一块估计任务工时,但是还是有一些意外的事情,这段时间大家都没什么精力放在这门上 ...
- [51CTO]新说MySQL事务隔离级别!
新说MySQL事务隔离级别! 事务隔离级别这个问题,无论是校招还是社招,面试官都爱问!然而目前网上很多文章,说句实在话啊,我看了后我都怀疑作者弄懂没!本文所讲大部分内容,皆有官网作为佐证,因此对本文内 ...
- Java 工厂方法模式
在工厂对象上调用创建方法,生成接口的某个实现的对象 通过这种方式,接口与实现分离 方法接口 /** * 方法接口 */ public interface Service { void method1( ...
- 使用AutoMapper实现Dto和Model的自由转换(中)
在上一篇文章中我们构造出了完整的应用场景,包括我们的Model.Dto以及它们之间的转换规则.下面就可以卷起袖子,开始我们的AutoMapper之旅了. [二]以Convention方式实现零配置的对 ...
- mybatis 传递参数的两种方式与模糊匹配 很重要
- java数组倒序查找值
java语言里面没有arr[:-2]这种方式取值 只能通过 arr[arr.length-1-x]的方式取值倒数的 x(标示具体的某个值)