【LOJ】#2533. 「CQOI2018」交错序列
题解
有毒吧
这题\(O(n)\)过不去
非得写\(O((a + b)^3\log n)\)的矩乘,同样很卡常
把\(x\)换成\(n - y\)
我们拆完式子发现是这样的
\(\sum_{i = 0}^{a} (-1)^{a + b - i} y^{a - i} n^{i} \binom{a}{i}\)
所以我们设\(f[i][k][0/1]\)为到了第\(i\)位,处理1个数的\(k\)次方,第\(i\)位是0还是1
每次加一相当于
\((y + 1)^k = \sum_{i = 0}^{k} \binom{k}{i}y^{i}\)
这样每个指数转移的系数确定了,可以矩乘
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int, int>
#define pdi pair<db, int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template <class T>
void read(T &res) {
res = 0;
char c = getchar();
T f = 1;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template <class T>
void out(T x) {
if (x < 0) {
x = -x;
putchar('-');
}
if (x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N, a, b, MOD, S;
int pos[2][95], C[105][105];
int inc(int a, int b) { return a + b >= MOD ? a + b - MOD : a + b; }
int mul(int a, int b) { return 1LL * a * b % MOD; }
struct Matrix {
int64 f[190][190];
Matrix() { memset(f, 0, sizeof(f)); }
friend Matrix operator*(const Matrix &a, const Matrix &b) {
Matrix c;
for (int i = 1; i <= S; ++i) {
for (int j = 1; j <= S; ++j) {
for (int k = 1; k <= S; ++k) {
c.f[i][j] += a.f[i][k] * b.f[k][j];
}
}
}
for (int i = 1; i <= S; ++i) {
for (int j = 1; j <= S; ++j) {
c.f[i][j] %= MOD;
}
}
return c;
}
} A, ans, tmp;
void fpow(Matrix &res, int c) {
res = A;
tmp = A;
--c;
while (c) {
if (c & 1) res = res * tmp;
tmp = tmp * tmp;
c >>= 1;
}
}
void Solve() {
read(N);
read(a);
read(b);
read(MOD);
for (int i = 0; i <= a + b; ++i) {
pos[0][i] = ++S;
pos[1][i] = ++S;
}
C[0][0] = 1;
for (int i = 1; i <= 100; ++i) {
C[i][0] = 1;
for (int j = 1; j <= i; ++j) {
C[i][j] = inc(C[i - 1][j], C[i - 1][j - 1]);
}
}
for (int i = 0; i <= a + b; ++i) {
for (int j = 0; j <= i; ++j) {
A.f[pos[0][j]][pos[1][i]] = C[i][j];
}
A.f[pos[0][i]][pos[0][i]] = 1;
A.f[pos[1][i]][pos[0][i]] = 1;
}
fpow(ans, N);
int res = 0, t = 1;
for (int i = 0; i <= a; ++i) {
int y = inc(ans.f[pos[0][0]][pos[1][a + b - i]], ans.f[pos[0][0]][pos[0][a + b - i]]);
int h = mul(mul(t, C[a][i]), y);
if ((a - i) & 1) h = MOD - h;
res = inc(res, h);
t = mul(t, N);
}
out(res);
enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in", "r", stdin);
#endif
Solve();
return 0;
}
【LOJ】#2533. 「CQOI2018」交错序列的更多相关文章
- loj#2531. 「CQOI2018」破解 D-H 协议(BSGS)
题意 题目链接 Sol 搞个BSGS板子出题人也是很棒棒哦 #include<bits/stdc++.h> #define Pair pair<int, int> #defin ...
- LOJ #2533. 「CTSC2018」暴力写挂(边分治合并)
题意 给你两个有 \(n\) 个点的树 \(T, T'\) ,求一对点对 \((x, y)\) 使得 \[ depth(x) + depth(y) - (depth(LCA(x , y)) + dep ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
随机推荐
- 【BZOJ2084】[Poi2010]Antisymmetry(manarcher)
[BZOJ2084][Poi2010]Antisymmetry(manarcher) 题面 BZOJ 洛谷 题解 一眼马拉车吧...明显就是在回文串的基础上随便改了改. 似乎还可以魔改回文树,然而我这 ...
- Linux上常用的基本命令
复制:copy [keysystem@localhost happydzy]$ cp file1 file2 [keysystem@localhost happydzy]$ ll total -rw- ...
- 如何通过卡面标识区分SD卡的速度等级
现在很多设备都可以插存储卡,而比较流行的就是SD(Secure Digital Memory Card)卡和Micro SD(原名TF,Trans-flash Card )卡,这两种卡主要就是尺寸不同 ...
- bzoj千题计划289:bzoj 2707: [SDOI2012]走迷宫
http://www.lydsy.com/JudgeOnline/problem.php?id=2707 dp[i] 表示从点i到终点的期望步数 dp[i]= Σ (dp[j]+1)/out[i] j ...
- CF&&CC百套计划4 Codeforces Round #276 (Div. 1) E. Sign on Fence
http://codeforces.com/contest/484/problem/E 题意: 给出n个数,查询最大的在区间[l,r]内,长为w的子区间的最小值 第i棵线段树表示>=i的数 维护 ...
- Zephir入门教程一
一.如何安装 zephir-安装和初体验:http://blog.csdn.net/u011142688/article/details/51619811 二.如何使用 需要切到工作目录下,也就是co ...
- JavaScript模拟QQ签名(HTML5 contenteditable属性)
例图: 一.思路 1.单击元素时,使元素可以编辑,并获得焦点 2.按下键盘检测用户编辑元素中的文本 3.监听按下Enter键操作或离开可编辑元素焦点时,更新数据库 二.代码 $(function(){ ...
- AngularJs -- 指令简介
整理书籍内容(QQ:283125476 发布者:M [重在分享,有建议请联系->QQ号]) HTML文档 HTML文档是一个纯文本文件,包含了页面的结构以及由CSS定义的样式,或者可以操作样式的 ...
- C. NN and the Optical Illusion(几何)
题目链接:http://codeforces.com/contest/1100/problem/C 题目大意:给你n和r,n指的是有n个圆围在里面的圆的外面,r指的是里面的圆的半径,然后让你求外面的圆 ...
- Javascript - 预编译与函数词法作用域
预编译与函数词法作用域(Precompiled & Scoped) 预编译 Javascript脚本的宿主在执行代码之前对脚本做了预编译处理,比如浏览器对Js进行了预编译,编译器会扫描所有的声 ...