题解

有毒吧

这题\(O(n)\)过不去

非得写\(O((a + b)^3\log n)\)的矩乘,同样很卡常

把\(x\)换成\(n - y\)

我们拆完式子发现是这样的

\(\sum_{i = 0}^{a} (-1)^{a + b - i} y^{a - i} n^{i} \binom{a}{i}\)

所以我们设\(f[i][k][0/1]\)为到了第\(i\)位,处理1个数的\(k\)次方,第\(i\)位是0还是1

每次加一相当于

\((y + 1)^k = \sum_{i = 0}^{k} \binom{k}{i}y^{i}\)

这样每个指数转移的系数确定了,可以矩乘

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int, int>
#define pdi pair<db, int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template <class T>
void read(T &res) {
res = 0;
char c = getchar();
T f = 1;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template <class T>
void out(T x) {
if (x < 0) {
x = -x;
putchar('-');
}
if (x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N, a, b, MOD, S;
int pos[2][95], C[105][105];
int inc(int a, int b) { return a + b >= MOD ? a + b - MOD : a + b; }
int mul(int a, int b) { return 1LL * a * b % MOD; }
struct Matrix {
int64 f[190][190];
Matrix() { memset(f, 0, sizeof(f)); }
friend Matrix operator*(const Matrix &a, const Matrix &b) {
Matrix c;
for (int i = 1; i <= S; ++i) {
for (int j = 1; j <= S; ++j) {
for (int k = 1; k <= S; ++k) {
c.f[i][j] += a.f[i][k] * b.f[k][j];
}
}
}
for (int i = 1; i <= S; ++i) {
for (int j = 1; j <= S; ++j) {
c.f[i][j] %= MOD;
}
}
return c;
}
} A, ans, tmp;
void fpow(Matrix &res, int c) {
res = A;
tmp = A;
--c;
while (c) {
if (c & 1) res = res * tmp;
tmp = tmp * tmp;
c >>= 1;
}
}
void Solve() {
read(N);
read(a);
read(b);
read(MOD);
for (int i = 0; i <= a + b; ++i) {
pos[0][i] = ++S;
pos[1][i] = ++S;
}
C[0][0] = 1;
for (int i = 1; i <= 100; ++i) {
C[i][0] = 1;
for (int j = 1; j <= i; ++j) {
C[i][j] = inc(C[i - 1][j], C[i - 1][j - 1]);
}
}
for (int i = 0; i <= a + b; ++i) {
for (int j = 0; j <= i; ++j) {
A.f[pos[0][j]][pos[1][i]] = C[i][j];
}
A.f[pos[0][i]][pos[0][i]] = 1;
A.f[pos[1][i]][pos[0][i]] = 1;
}
fpow(ans, N);
int res = 0, t = 1;
for (int i = 0; i <= a; ++i) {
int y = inc(ans.f[pos[0][0]][pos[1][a + b - i]], ans.f[pos[0][0]][pos[0][a + b - i]]);
int h = mul(mul(t, C[a][i]), y);
if ((a - i) & 1) h = MOD - h;
res = inc(res, h);
t = mul(t, N);
}
out(res);
enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in", "r", stdin);
#endif
Solve();
return 0;
}

【LOJ】#2533. 「CQOI2018」交错序列的更多相关文章

  1. loj#2531. 「CQOI2018」破解 D-H 协议(BSGS)

    题意 题目链接 Sol 搞个BSGS板子出题人也是很棒棒哦 #include<bits/stdc++.h> #define Pair pair<int, int> #defin ...

  2. LOJ #2533. 「CTSC2018」暴力写挂(边分治合并)

    题意 给你两个有 \(n\) 个点的树 \(T, T'\) ,求一对点对 \((x, y)\) 使得 \[ depth(x) + depth(y) - (depth(LCA(x , y)) + dep ...

  3. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  4. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  5. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  6. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  9. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

随机推荐

  1. Apache Storm从一端读取实时数据的原始流

    Apache Storm从一端读取实时数据的原始流,并将其传递通过一系列小处理单元,并在另一端输出处理/有用的信息. 下图描述了Apache Storm的核心概念. 640?wx_fmt=png&am ...

  2. 用Python建设企业认证和权限控制平台

    目前大家对Python的了解更多来源是数据分析.AI.运维工具开发,在行业中使用Python进行web开发,同样也是非常受欢迎的,例如:FaceBook,豆瓣,知乎,饿了么等等,本文主要是介绍是利用P ...

  3. 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)

    [BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...

  4. UML类图学习笔记

    http://note.youdao.com/noteshare?id=d5af220db7081dda73511fcb7b4da390

  5. 位运算符和unity Layers

    按位运算符:与(&).非(~).或(|).异或(^).<<(左移).>>(右移).位运算符主要用来对二进制位进行操作. 逻辑运算符:&&.||.!.逻辑 ...

  6. 金融量化分析【day110】:Pandas-DataFrame读取与写入

    一.DataFrame DataFrame是一个表格型的数据结构,含有一组有序的列 DataFrame可以被看作是有Series组成的字典并且工用一个索引 1.创建方式 pd.DataFrame({' ...

  7. python操作txt文件中数据教程[2]-python提取txt文件

    python操作txt文件中数据教程[2]-python提取txt文件中的行列元素 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原始txt文件 程序实现后结果-将txt中元素提取并保存在c ...

  8. sssss

    关于征集参加第五届世界互联网大会“世界互联网领先科技成果发布活动”相关成果的通知 2018年07月24日 08:55:00来源: 中国网信网     [打印] [纠错]     各有关单位/个人: 第 ...

  9. Webx示例-PetStore分析1

    1. 下载源码 2. 启动容器,加载组件--WebxContextLoaderListener WebxContextLoaderListener继承自org.springframework.web. ...

  10. [整理]Error: [ngRepeat:dupes]的解决方法

    sdfsadf <div class="pageNum middle PT10"> <a href="javascript:void(0);" ...