【BZOJ4888】[TJOI2017]异或和(树状数组)
【BZOJ4888】[TJOI2017]异或和(树状数组)
题面
题解
考虑每个位置上的答案,分类讨论这一位是否存在一,值域树状数组维护即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,a[MAX],c[MAX*10];ll ans;
int lb(int x){return x&(-x);}
void add(int x,int w){x+=1;while(x<=m)c[x]+=w,x+=lb(x);}
int getsum(int x){int ret=0;while(x)ret+=c[x],x-=lb(x);return ret;}
int Query(int l,int r)
{
if(l>r)return 0;
return getsum(min(r+1,m))-getsum(min(l,m));
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read()+a[i-1];
m=a[n];add(0,1);
for(int j=0;j<=23;++j)
{
int P=1<<j,sum=0;
for(int i=1;i<=n;++i)
{
if(a[i]&P)
sum+=Query(0,a[i]%P)+Query(P+a[i]%P+1,P+P-1);
else
sum+=Query(a[i]%P+1,P-1)+Query(P,P+a[i]%P);
add(a[i]%(P+P),1);
}
for(int i=1;i<=n;++i)add(a[i]%(P+P),-1);
if(sum&1)ans^=P;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ4888】[TJOI2017]异或和(树状数组)的更多相关文章
- [BZOJ4888][TJOI2017]异或和(树状数组)
题目描述 在加里敦中学的小明最近爱上了数学竞赛,很多数学竞赛的题都是与序列的连续和相关的.所以对于一个序列,求出它们所有的连续和来说,小明觉得十分的简单.但今天小明遇到了一个序列和的难题,这个题目不仅 ...
- BZOJ.4888.[TJOI2017]异或和(树状数组)
BZOJ 洛谷 \(Description\) 求所有区间和的异或和. \(n\leq 10^5,\ \sum a_i\leq 10^6\). \(Solution\) 这样的题还是要先考虑按位做. ...
- Luogu3760 TJOI2017 异或和 树状数组
传送门 题意:给出一个长度为$N$的非负整数序列,求其中所有连续区间的区间和的异或值.$N \leq 10^5$,所有元素之和$\leq 10^6$ 设序列的前缀和为$s_i$,特殊地,$s_0=0$ ...
- 【Foreign】异色弧 [树状数组]
异色弧 Time Limit: 20 Sec Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 8 1 ...
- P5057 [CQOI2006]简单题 前缀异或差分/树状数组
好思路,好思路... 思路:前缀异或差分 提交:1次 题解:区间修改,单点查询,树状数组,如思路$qwq$ #include<cstdio> #include<iostream> ...
- 洛谷 P6225 [eJOI2019]异或橙子 (树状数组)
题意:有\(n\)个数,起始值均为\(0\),进行\(q\)次操作,每次输入三个数,如果第一个数为\(1\),则将第\(i\)个数修改为\(j\),如果为\(2\),则求区间\([l,r]\)内的所有 ...
- [CSP-S模拟测试]:异或(树状数组+LCA)
题目传送门(内部题21) 输入格式 第一行一个字符串$str$,表示数据类型.第二行一个正整数$k$,表示集合$K$的大小,保证$k>1$.接下来$k$行每行$k$个数,第$i$行第$j$个数表 ...
- BZOJ4888 [Tjoi2017]异或和 【树状数组】
题目链接 BZOJ4888 题解 要求所有连续异或和,转化为任意两个前缀和相减 要求最后的异或和,转化为求每一位\(1\)的出现次数 所以我们只需要对每一个\(i\)快速求出\(sum[i] - su ...
- BZOJ4888 [Tjoi2017]异或和 FFT或树状数组+二进制拆位
题面 戳这里 简要题解 做法一 因为所有数的和才100w,所以我们可以直接求出所有区间和. 直接把前缀和存到一个权值数组,再倒着存一遍,大力卷积一波. 这样做在bzoj目前还过不了,但是luogu开O ...
随机推荐
- Scala--集合
一.主要的集合特质 Seq有先后顺序的序列,如数组列表.IndexedSeq通过下标快速的访问元素.不可变:Vector, Range, List 可变:ArrayBuffer, LinkedList ...
- 20155217《网络对抗》Exp02 后门原理与实践
20155217<网络对抗>Exp02 后门原理与实践 实验要求 使用netcat获取主机操作Shell,cron启动. 使用socat获取主机操作Shell,任务计划启动. 使用MSF ...
- IHttpModule不起作用的两个原因
最近在将系统改造成微服务的过程中,需要对以前的Url请求做兼容性处理,于是就采用了HttpModules模型,但在测试中碰到IHttpModules模块不起作用. 一.IIS配置问题 我用的IIS7. ...
- CF 961E Tufurama
JYZdalao上课讲了这道题,觉得很好可做 其实也是一道理解了就水爆了的题目 把题意抽象化,可以发现题目求的满足 i<j a[i]>=j a[j]>=i 的i,j对数.由于i,j顺 ...
- mfc Unicode转 ASNI ,WCHAR 转 CHAR
知识点: 宽字符转多字节字符 多字节字符转宽字符 什么是ANSI,什么又是UNICODE呢?其实这是两种不同的编码方式标准,ANSI中的字符采用8bit,而UNICODE中的字符采用16bit 在VC ...
- 【LG4070】[SDOI2016]生成魔咒
[LG4070][SDOI2016]生成魔咒 题面 洛谷 题解 如果我们不用在线输的话,那么答案就是对于所有状态\(i\) \[ \sum (i.len-i.fa.len) \] 现在我们需要在线询问 ...
- TMS320VC5509片内ADC采集
1. ADC采集比较简单,内部的10位的ADC,AIN0-AIN3的输入,主要是用的CSL的库函数#include <csl_adc.h> ; Uint16 samplestoraage[ ...
- mongodb安装教程
MongoDB 下载及安装 MongoDB 提供了可用于 32 位和 64 位系统的预编译二进制包,你可以从MongoDB官网下载安装,MongoDB 预编译二进制包下载地址:https://www. ...
- CSS快速入门-属性和伪类
一.属性选择器 <div class="gradefather"> hello1 <div name="son">hello2 < ...
- 记录:Ubuntu 18.04 安装 tensorflow-gpu 版本
狠下心来重新装了系统,探索一下 gpu 版本的安装.比较令人可喜的是,跟着前辈们的经验,还是让我给安装成功了.由于我是新装的系统,就像婴儿般纯净,所以进入系统的第一步就是安装 cuda,只要这个不出错 ...