「TJOI / HEOI2016」字符串

题目描述

佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物。生日礼物放在一个神奇的箱子中。箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 \(m\) 个问题。佳媛姐姐必须正确回答这 \(m\)个问题,才能打开箱子拿到礼物,升职加薪,出任 \(CEO\),嫁给高富帅,走上人生巅峰。每个问题均有 \(a,b,c,d\) 四个参数,问你子串 \(s[a…b]\) 的所有子串和 \(s[c…d]\) 的最长公共前缀的长度的最大值是多少?佳媛姐姐并不擅长做这样的问题,所以她向你求助,你该如何帮助她呢?

\(1 \leq n, m \leq 100000, \ a \leq b, \ c \leq d, \ 1 \leq a, b, c, d \leq n\)

### 解题思路 :

写\(sam\)是肯定会去写的,这样才学的了字符串,后缀数组又不会用,\(sam\)套上数据结构的感觉就像回家一样

里面又能剖分又能线段树合并,调试又好调,我爱死这种写法了 \(qwq\)

问题求一个字符串的前缀最多能和另一个字符串的所有子串匹配多少, 不妨二分答案判断这个前缀是否在这些子串里出现过

考虑对母串建 \(sam\) ,求出原串中每一个后缀在 \(sam\) 上的对应节点,那么对于需要\(check\) 的前缀 \([c, c + len -1]\) ,可以快速倍增找到其在前缀树上对应的节点

设找到的节点为 \(u\) ,问题就转化为 \(u\) 的 \(right\) 集合中,是否存在一个来自于 \([a+len-1, b]\) 的后缀

所以,直接大力线段树合并维护 \(parent\) 树上每个节点的 \(right\) 集合即可,查询只需要判断对应线段树的 \([a+len-1, b]\) 的和是否 \(>=1\),复杂度是 \(O(mlog^2n)\)

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define N (200005)
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
if(f) x = -x;
}
char s[N]; int n, m;
struct Segment_Tree{
int sum[N*25], lc[N*25], rc[N*25], cnt;
inline void modify(int &u, int l, int r, int pos){
u = ++cnt;
if(l == r) return (void) (sum[u]++);
int mid = l + r >> 1;
if(pos <= mid) modify(lc[u], l, mid, pos);
else modify(rc[u], mid + 1, r, pos);
sum[u] = sum[lc[u]] + sum[rc[u]];
}
inline int merge(int x, int y, int l, int r){
if(!x || !y) return x + y; int o = ++cnt;
if(l == r) sum[o] = sum[x] + sum[y];
else{
int mid = l + r >> 1;
lc[o] = merge(lc[x], lc[y], l, mid);
rc[o] = merge(rc[x], rc[y], mid + 1, r);
sum[o] = sum[lc[o]] + sum[rc[o]];
}
return o;
}
inline int query(int u, int l, int r, int L, int R){
if(!u) return 0;
if(l >= L && r <= R) return sum[u];
int mid = l + r >> 1, res = 0;
if(L <= mid) res += query(lc[u], l, mid, L, R);
if(mid < R) res += query(rc[u], mid + 1, r, L, R);
return res;
}
}Seg;
struct Suffix_Automaton{
int f[N][23], rt[N<<1], buf[N], a[N];
int ch[N][26], fa[N], dep[N], pos[N], tail, size;
inline Suffix_Automaton(){ tail = size = 1; }
inline int newnode(int x){ dep[++size] = x; return size; }
inline void ins(int c, int id){
int p = tail, np = newnode(dep[p] + 1);
Seg.modify(rt[np], 1, n, id), pos[id] = np;
for(; p && !ch[p][c]; p = fa[p]) ch[p][c] = np;
if(!p) return (void) (fa[np] = 1, tail = np);
int q = ch[p][c];
if(dep[q] == dep[p] + 1) fa[np] = q;
else{
int nq = newnode(dep[p] + 1);
fa[nq] = fa[q], fa[q] = fa[np] = nq;
for(int i = 0; i < 26; i++) ch[nq][i] = ch[q][i];
for(; p && ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
}tail = np;
}
inline void prepare(){
for(int i = 1; i <= size; i++) f[i][0] = fa[i];
for(int j = 1; j <= 22; j++)
for(int i = 1; i <= size; i++) f[i][j] = f[f[i][j-1]][j-1];
for(int i = 1; i <= size; i++) buf[dep[i]]++;
for(int i = 1; i <= size; i++) buf[i] += buf[i-1];
for(int i = 1; i <= size; i++) a[buf[dep[i]]--] = i;
for(int i = size; i >= 2; i--){
int u = a[i];
rt[fa[u]] = Seg.merge(rt[u], rt[fa[u]], 1, n);
}
}
inline bool check(int x, int len, int l, int r){
x = pos[x];
for(int i = 22; i >= 0; i--) if(dep[f[x][i]] >= len) x = f[x][i];
return Seg.query(rt[x], 1, n, l, r) >= 1;
}
}van;
inline int solve(int a, int b, int c, int d){
int l = 1, r = min(b - a + 1, d - c + 1), ans = 0;
while(l <= r){
int mid = l + r >> 1;
if(van.check(c + mid - 1, mid, a + mid - 1, b))
ans = mid, l = mid + 1;
else r = mid - 1;
}
return ans;
}
int main(){
read(n), read(m), scanf("%s", s + 1);
for(int i = 1; i <= n; i++) van.ins(s[i] - 'a', i);
van.prepare();
for(int i = 1; i <= m; i++){
int a, b, c, d;
read(a), read(b), read(c), read(d);
printf("%d\n", solve(a, b, c, d));
}
return 0;
}

「TJOI / HEOI2016」字符串的更多相关文章

  1. loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增

    题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...

  2. 【LOJ】#2059. 「TJOI / HEOI2016」字符串

    题解 我们冷静一下,先画一棵后缀树 然后发现我们要给c和d这一段区间在[a,b]这一段开头的串里找lcp 而lcp呢,就是c点的祖先的到根的一段,假如这个祖先的子树里有[a,b - dis[u] + ...

  3. loj2059 「TJOI / HEOI2016」字符串

    字符串好难啊不会啊 #include <iostream> #include <cstdio> using namespace std; int n, m, rnk[10000 ...

  4. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  5. AC日记——#2054. 「TJOI / HEOI2016」树

    #2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...

  6. AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ

    #2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...

  7. loj #2055. 「TJOI / HEOI2016」排序

    #2055. 「TJOI / HEOI2016」排序   题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...

  8. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  9. LOJ #2058「TJOI / HEOI2016」求和

    不错的推柿子题 LOJ #2058 题意:求$\sum\limits_{i=0}^n\sum\limits_{j=0}^nS(i,j)·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...

随机推荐

  1. CAN总线优势

    CAN总线优势 RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 首先,CAN控制器工作于多主方式,网络中 的各节点都可根据总线访问优先权(取 ...

  2. 3D Touch开发技巧的笔记

    iPhone6s以及iPhone6s plus搭载iOS9,有一个新功能叫做3D Touch,这个功能有很大的用处,关键是要会用,这给交互方式又多了一个新的选择和思考,比如说游戏中的额外控制选项.绘图 ...

  3. timestamp 字段

    项目中由于需求设计,数据库中需要一个timestamp时间戳类型的字段来作为区别数据添加和修改的标识.由于timestamp在SQL SERVER 2005数据库中,不可为空的timestamp类型在 ...

  4. 汇编 inc 和 dec 指令

    知识点: inc 加1指令 dec 减1指令 一.加一指令inc inc a 相当于 add a, //i++ 优点 速度比sub指令快,占用空间小 这条指令执行结果影响AF.OF.PF.SF.Z ...

  5. mfc CProgressCtrl

    CProgressCtrl常用属性 CProgressCtrl类常用成员函数 CProgressCtrl代码示例 一.CProgressCtrl控件属性 当我们在处理大程序时,常常需要耗很长时间(比如 ...

  6. Linux日记Day3---Linux的文件属性与目录配置

    Linux最优秀的地方之一,就在于它的多用户.多任务环境.为了让用户具有较安全的管理机制,文件的权限管理是很重要的.Linux通常将文件的访问方式分为分为三个类别,分别是owner/group/oth ...

  7. CF 24 D. Broken robot

    D. Broken robot 链接. 题意: 一个方格,从(x,y)出发,等价的概率向下,向左,向右,不动.如果在左右边缘上,那么等价的概率不动,向右/左,向下.走到最后一行即结束.求期望结束的步数 ...

  8. springboot 设置 session 过期时间

    application.properties server.session.timeout=86400 #单位(s) 这里是24小时

  9. 调试OV2735总结

    调试找到的问题: 1:开始调试的时候因为之前的工程师原理图和BOM出错,导致本来是2.8V电压的焊接的是1.8V的LDO所以这个是第一个问题 2:因为FAE反应说sensor没有反应I2C没有通信,所 ...

  10. 使用Fidder从安卓模拟器获取APP内H5游戏网址

    大家都知道H5游戏其实是网页,但是有些APP或者微端不显示网址链接.这里给大家介绍介绍一种,利用Fiddler进行抓包,获取APP打开的网址的方法.有人说何必多此一举呢,直接用模拟器玩游戏就好了.的确 ...