题意

题目链接

Sol

啊啊这题好恶心啊,推的时候一堆细节qwq

\(a \% i = a - \frac{a}{i} * i\)

把所有的都展开,直接分块。关键是那个\(i \not= j\)的地方需要减。。。。

然后就慢慢写就好了

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 19940417, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline LL add(A x, B y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
template <typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
template <typename A, typename B> inline LL mul(A x, B y) {
x = (x + mod) % mod;
y = (y + mod) % mod;
return 1ll * x * y % mod;
}
template <typename A> inline LL sqr(A x) {
return 1ll * x * x;
}
int N, M, a, b;
int sum(int l, int r) {
if(l == r) return l;
int n = r - l + 1;
if(n & 1) return add(mul(l, n), mul(n, (n - 1) / 2));
else return add(mul(l, n), mul(n / 2, n - 1));
}
int calc(int n) {
int ret = 0;
for(int i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
add2(ret, mul(n / j, sum(i, j)));
}
return ret;
}
int get(int x) {
int a = x, b = 2 * x + 1, c = x + 1;
if(a % 2 == 0) a /= 2;
else if(b % 2 == 0) b /= 2;
else if(c % 2 == 0) c /= 2;
if(a % 3 == 0) a /= 3;
else if(b % 3 == 0) b /= 3;
else if(c % 3 == 0) c /= 3;
return mul(mul(a, b), c);
}
int fuck2(int i, int j) {//sum k^2
return add(get(j), -get(i - 1));
}
int calc2() {
int ret = 0;
for(int i = 1, j; i <= N; i = j + 1) {
j = min(M / (M / i), N / (N / i));
int a = M / i, b = N / i;
add2(ret, add(add(mul(N, mul(a, sum(i, j))), mul(M, mul(b, sum(i, j)))), -mul(mul(a, b), fuck2(i, j))));
}
return ret;
}
signed main() {
cin >> N >> M;
if(N > M) swap(N, M);
a = calc(N);
b = calc(M);
int ans = mul(add(mul(N, N), -a), add(mul(M, M), -b));
add2(ans, -mul(N, mul(N, M)));
add2(ans, calc2());
cout << ans;
return 0;
}

BZOJ2956: 模积和(数论分块)的更多相关文章

  1. BZOJ2956: 模积和——整除分块

    题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...

  2. 【数论分块】bzoj2956: 模积和

    数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...

  3. 【bzoj2956】模积和 数论

    题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...

  4. BZOJ2956: 模积和

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  5. bzoj2956: 模积和(数论)

    先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...

  6. ACM学习历程—BZOJ2956 模积和(数论)

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  7. [Bzoj 2956] 模积和 (整除分块)

    整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...

  8. bzoj 2956: 模积和 ——数论

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  9. BZOJ 2956 模积和(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...

随机推荐

  1. Windows Service 项目中 Entity Framework 无法加载的问题

    Windows Service 项目引用了别的类库项目,别的项目用到了 Entity Framework(通过Nuget引入),但是我的 Windows Service 无法开启,于是我修改了 App ...

  2. flask框架~简易编写

    flaks框架: 先导报 from flask import Flask 重定向模块:redirect url_for是简易寻址跳转 jsonify强转为json格式 建立flask对象:app = ...

  3. java 简单认识移位运算符和位运算符

    移位运算符和位运算符本质上都是操作二进制位,因为计算机存储的是二进制数据,运算效率相对较高. 移位运算符:把整数的二进制位进行左移或右移 .左移一位,相当于这个数乘以2, 右移一位,相当于这个数除以2 ...

  4. ORA-01113 & ORA-01110同时出现

    \NOARCHIVED LOG , 没备份 , Redo Log 被覆盖 , 某个datafile不能online 设计知识点:BBED> set block 1BBED> p kcvfh ...

  5. js变量提升

    JavaScript的函数定义有个特点,它会先扫描整个函数体的语句,把所有申明的变量“提升”到函数顶部: 'use strict'; function foo() { var x = 'Hello, ...

  6. django操作memcached

    1.首先需要在settings.py中配置好缓存 CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.Me ...

  7. xamarin 编译出现Xamarin.Build.Forms.Tasks.GetTaskAbi 无法加载的错误解决方法

    最新升级最新的vs2017后发现编译xamarin forms 会出现错误 Xamarin.Forms.Build.Tasks.GetTasksAbi task could not be loaded ...

  8. Composite组合模式(结构型模式)

    1.概述 在面向对象系统中,经常会遇到一些具有"容器性质"的对象,它们自己在充当容器的同时,也充当其他对象的容器. 2.案例 需要构建一个容器系统,需要满足以下几点要求: (1). ...

  9. 32-hadoop-hbase调优

    1, 数据膨胀后, 才对region进行分区, 效率比较低, 所以需要预创建region, 进行负载均衡写入 package com.wenbronk.hbase; import org.apache ...

  10. sql-DDL, DML 常用语句

    mysql的安装可见: http://www.cnblogs.com/wenbronk/p/6840484.html 很久不用mysql, 今天建表都不会了, , , 慢慢补充 sql语言分为3种: ...