题意

题目链接

Sol

啊啊这题好恶心啊,推的时候一堆细节qwq

\(a \% i = a - \frac{a}{i} * i\)

把所有的都展开,直接分块。关键是那个\(i \not= j\)的地方需要减。。。。

然后就慢慢写就好了

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 19940417, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline LL add(A x, B y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
template <typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
template <typename A, typename B> inline LL mul(A x, B y) {
x = (x + mod) % mod;
y = (y + mod) % mod;
return 1ll * x * y % mod;
}
template <typename A> inline LL sqr(A x) {
return 1ll * x * x;
}
int N, M, a, b;
int sum(int l, int r) {
if(l == r) return l;
int n = r - l + 1;
if(n & 1) return add(mul(l, n), mul(n, (n - 1) / 2));
else return add(mul(l, n), mul(n / 2, n - 1));
}
int calc(int n) {
int ret = 0;
for(int i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
add2(ret, mul(n / j, sum(i, j)));
}
return ret;
}
int get(int x) {
int a = x, b = 2 * x + 1, c = x + 1;
if(a % 2 == 0) a /= 2;
else if(b % 2 == 0) b /= 2;
else if(c % 2 == 0) c /= 2;
if(a % 3 == 0) a /= 3;
else if(b % 3 == 0) b /= 3;
else if(c % 3 == 0) c /= 3;
return mul(mul(a, b), c);
}
int fuck2(int i, int j) {//sum k^2
return add(get(j), -get(i - 1));
}
int calc2() {
int ret = 0;
for(int i = 1, j; i <= N; i = j + 1) {
j = min(M / (M / i), N / (N / i));
int a = M / i, b = N / i;
add2(ret, add(add(mul(N, mul(a, sum(i, j))), mul(M, mul(b, sum(i, j)))), -mul(mul(a, b), fuck2(i, j))));
}
return ret;
}
signed main() {
cin >> N >> M;
if(N > M) swap(N, M);
a = calc(N);
b = calc(M);
int ans = mul(add(mul(N, N), -a), add(mul(M, M), -b));
add2(ans, -mul(N, mul(N, M)));
add2(ans, calc2());
cout << ans;
return 0;
}

BZOJ2956: 模积和(数论分块)的更多相关文章

  1. BZOJ2956: 模积和——整除分块

    题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...

  2. 【数论分块】bzoj2956: 模积和

    数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...

  3. 【bzoj2956】模积和 数论

    题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...

  4. BZOJ2956: 模积和

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  5. bzoj2956: 模积和(数论)

    先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...

  6. ACM学习历程—BZOJ2956 模积和(数论)

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  7. [Bzoj 2956] 模积和 (整除分块)

    整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...

  8. bzoj 2956: 模积和 ——数论

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  9. BZOJ 2956 模积和(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...

随机推荐

  1. (转)Java并发编程:线程池的使用方法

    http://www.cnblogs.com/dolphin0520/p/3932921.html http://www.journaldev.com/1069/java-thread-pool-ex ...

  2. 【sping揭秘】3、Spring容器中bean默认是保持一个实例

    Spring容器中bean默认是保持一个实例 这里做一个测试,基础代码 package cn.cutter.start.provider; import org.springframework.con ...

  3. 【tomcat】servlet原理及其生命周期

    1.什么是servlet? Servlet(Servlet Applet),全称Java Servlet,是用Java编写的服务器端程序.而这些Servlet都要实现Servlet这个接口.其主要功能 ...

  4. 3DMax——基础

    1.首次打开3DMAX设置单位: 自定义→单位设置→①系统单位设置→1单位=1.0毫米:②公制→毫米 注:室内单位为毫米,室外单位为米 2.从CAD导出可以导入到3DMAX的文件: 选中要导出的部分→ ...

  5. 匿名类、包、权限修饰符_DAY10

    1:内部类(理解) (1)把类定义在一个类的内部. (2)特点:   A:内部类可以直接使用外部类的成员,包括私有.   B:外部类要使用内部类成员,必须创建对象使用.    例子: public c ...

  6. KahaDB简介

    ActiveMQ 5.3以后,出现了KahaDB.她是一个基于文件支持事务的消息存储器,是一个可靠,高性能,可扩展的消息存储器.     她的设计初衷就是使用简单并尽可能的快.KahaDB的索引使用一 ...

  7. 升级Ghost

    环境:CentOS 6.3 [root@AY1406151605405725a8Z ghost]# ls -l total 108 -rw-rw-rw-  1 root root  1132 Sep ...

  8. NSLog()输出函数集格式字符

    nslog()强大的功能这里就不多说了,笔者从c#转过来,难免会有些陌生.在c#中用format("{0}",xx}来进行占位,下面就来讲讲在oc中的格式字符; d:带符号的十进制 ...

  9. Git学习系列之Windows上安装Git之后的一些配置(图文详解)

    不多说,直接上干货! 前面博客 Git学习系列之Windows上安装Git详细步骤(图文详解) 第一次使用Git时,需要对Git进行一些配置,以方便使用Git. 不过,这种配置工作只需要进行一次便可, ...

  10. Google CodeJam 2016 round3-A.Teaching Assistant

    题目描述: 原题是纯英文,大意是:你每天可以选择一门课去学习,选题和提交答案.题目为Coding或者Jamming.选的题目如果和老师选的一致,提交答案也匹配,最后可以得10分,若选题不一致只能得5分 ...