题意

题目链接

Sol

啊啊这题好恶心啊,推的时候一堆细节qwq

\(a \% i = a - \frac{a}{i} * i\)

把所有的都展开,直接分块。关键是那个\(i \not= j\)的地方需要减。。。。

然后就慢慢写就好了

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 19940417, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline LL add(A x, B y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
template <typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
template <typename A, typename B> inline LL mul(A x, B y) {
x = (x + mod) % mod;
y = (y + mod) % mod;
return 1ll * x * y % mod;
}
template <typename A> inline LL sqr(A x) {
return 1ll * x * x;
}
int N, M, a, b;
int sum(int l, int r) {
if(l == r) return l;
int n = r - l + 1;
if(n & 1) return add(mul(l, n), mul(n, (n - 1) / 2));
else return add(mul(l, n), mul(n / 2, n - 1));
}
int calc(int n) {
int ret = 0;
for(int i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
add2(ret, mul(n / j, sum(i, j)));
}
return ret;
}
int get(int x) {
int a = x, b = 2 * x + 1, c = x + 1;
if(a % 2 == 0) a /= 2;
else if(b % 2 == 0) b /= 2;
else if(c % 2 == 0) c /= 2;
if(a % 3 == 0) a /= 3;
else if(b % 3 == 0) b /= 3;
else if(c % 3 == 0) c /= 3;
return mul(mul(a, b), c);
}
int fuck2(int i, int j) {//sum k^2
return add(get(j), -get(i - 1));
}
int calc2() {
int ret = 0;
for(int i = 1, j; i <= N; i = j + 1) {
j = min(M / (M / i), N / (N / i));
int a = M / i, b = N / i;
add2(ret, add(add(mul(N, mul(a, sum(i, j))), mul(M, mul(b, sum(i, j)))), -mul(mul(a, b), fuck2(i, j))));
}
return ret;
}
signed main() {
cin >> N >> M;
if(N > M) swap(N, M);
a = calc(N);
b = calc(M);
int ans = mul(add(mul(N, N), -a), add(mul(M, M), -b));
add2(ans, -mul(N, mul(N, M)));
add2(ans, calc2());
cout << ans;
return 0;
}

BZOJ2956: 模积和(数论分块)的更多相关文章

  1. BZOJ2956: 模积和——整除分块

    题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...

  2. 【数论分块】bzoj2956: 模积和

    数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...

  3. 【bzoj2956】模积和 数论

    题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...

  4. BZOJ2956: 模积和

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  5. bzoj2956: 模积和(数论)

    先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...

  6. ACM学习历程—BZOJ2956 模积和(数论)

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  7. [Bzoj 2956] 模积和 (整除分块)

    整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...

  8. bzoj 2956: 模积和 ——数论

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  9. BZOJ 2956 模积和(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...

随机推荐

  1. iOS数据持久化--数据库

    一.简介 1.iOS常用的5中存储方式 (1)plist (2)preference(用户属性) (3)归档 (4)数据库 (5)core data 其中(1)(2) (3) 都只能存储小型的数据,因 ...

  2. springbootf访问静态文件资源

    springboot目录结构: 网友说在springboot的配置文件中加 现在访问static目录下的jquery文件 用jquery在页面做一个弹窗 启动服务看页面效果 页面没有出现弹窗 ,连jq ...

  3. EXECUTE 后的事务计数指示缺少了 COMMIT 或 ROLLBACK TRANSACTION 语句。上一计数 = 1,当前计数 = 2

    理解这一句话: 一个begin tran会增加一个事务计数器,要有相同数量的commit与之对应,而rollback可以回滚全部计数器 这个错误一般是出现在嵌套事务中. 测试环境 sql 2008 例 ...

  4. Strom的trident小例子

    上代码: public class TridentFunc { /** * 类似于普通的bolt */ public static class MyFunction extends BaseFunct ...

  5. Ruby:线程实现经典的生产者消费者问题

    运行结果: ProAndCon 0 produced 1 produced consumed 0 2 produced 3 produced consumed 1 consumed 2 consume ...

  6. CentOS 部署 Python3 的一些注意事项

    环境:centos6.7https://github.com/vinta/awesome-pythonhttps://github.com/PyMySQL/PyMySQLhttps://github. ...

  7. spring mvc 数据格式化

    web.xml <web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www. ...

  8. 一段奇妙的vim编辑器之旅

    一.背景 对于Linux服务器上的操作,我们往往少不了使用vim,而有时候我对vim的使用并没有那么的熟练和深入,这周就深入的学习了vim的使用,包括入门和进阶,先分享给你们,也方便自己以后复习查询. ...

  9. jsp链接orcl

    自己整的!好用滴!!希望能帮到一些初学者! package lobsterwwww; import java.sql.Connection; import java.sql.DriverManager ...

  10. Linux安装go语言开发包

    1.下载go语言安装包,eg:go1.7.1.linux-amd64.tar.gz2.安装go语言 $ cd /home/xm6f/dev $ tar -zxvf go1.7.1.linux-amd6 ...