传送门


为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text{或} c = z\}\)

发现恰好\(k\)个位置不大好算,考虑容斥计算强制\(k\)个位置是极大值的概率

对于极大值所在位置的数\(a_1,a_2,...,a_k\),假设\(a_1 > a_2 > ... > a_k\),那么我们还需要满足\(a_1 \geq a_1\)所在位置控制的所有数,\(a_2,...,a_k\)同理,但是\(a_1,a_2,...,a_k\)所在位置所控制的位置有交,这会导致概率不独立,所以不能直接将概率相乘。

将上面的条件改一下,可以变成:\(a_1 \geq a_1,a_2,...,a_k\)所在位置的控制范围的并,\(a_2,...,a_k\)同理。注意到\(a_2,...,a_k\)所在位置的控制范围的并是\(a_1,a_2,...,a_k\)所在位置的控制范围的并的子集,而需要一个集合中某一个位置是最大值和需要这个集合中不包含该集合最大值位置的子集中某一个位置是这个子集中的最大值两者的概率显然是独立的,因为当前集合中最大值如何并不会影响到子集中最大值。

控制范围的并的大小可以直接容斥算。

设\(f_i\)表示强制\(i\)个位置是极大值的概率,\(g_i\)表示恰好\(i\)个位置是极大值的概率,那么\(f_i = \sum\limits_{k \geq i}^n \binom{k}{i} g_i\),我们能求\(f\),要求\(g\)。不难发现这是一个二项式反演,可以得到\(g_i = \sum\limits_{j=i}^n (-1)^{j-i} \binom{j}{i} f_i\)。

代码

LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演的更多相关文章

  1. [CTS2019]随机立方体(容斥+组合数学)

    这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不 ...

  2. 【CTS2019】随机立方体(容斥)

    [CTS2019]随机立方体(容斥) 题面 LOJ 洛谷 题解 做这道题目的时候不难想到容斥的方面. 那么我们考虑怎么计算至少有\(k\)个极大值的方案数. 我们首先可以把\(k\)个极大值的位置给确 ...

  3. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  4. 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)

    [传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...

  5. NOI Online 游戏 树形dp 广义容斥/二项式反演

    LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g ...

  6. LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)

    博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const ...

  7. HDU 2841 容斥 或 反演

    $n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...

  8. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  9. 题解-CTS2019随机立方体

    problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...

随机推荐

  1. siblings() 方法

    siblings([selected])       简介: 给定一个表示一组DOM元素的jQuery对象,该.siblings()方法允许我们在DOM树中搜索这些元素的兄弟节点,并从匹配的元素构造一 ...

  2. SQL基础-创建新的输出字段

    一.创建新的输出字段 1.建表.插数据 ### CREATE TABLE `t_stock_trans_dtl` ( `trans_id` varchar(100) NOT NULL COMMENT ...

  3. mysql e的n次幂exp()

    mysql> ); +-------------------+ | exp() | +-------------------+ | 2.718281828459045 | +---------- ...

  4. 模板 - 部分C++库

    __builtin系列 据说是GCC自带的系列,在本地装有 GNU GCC Compiler 的 Codeblocks 和 Codeforces 等平台都可以使用这些.但是没办法从 Codeblock ...

  5. hive集成kerberos

    1.票据的生成 kdc服务器操作,生成用于hive身份验证的principal 1.1.创建principal # kadmin.local -q “addprinc -randkey hive/yj ...

  6. better-scroll在vue项目中的使用

    1.准备工作 在项目中安装better-scroll: npm install --save better-scroll 组件中引入插件 import BScroll from "bette ...

  7. Asp.net MVC 权限验证,以及是否允许匿名访问

    public class CheckUserAttribute : ActionFilterAttribute, IAuthorizationFilter { public void OnAuthor ...

  8. ProxyFactoryBean与AopProxy介绍

    1.ProxyFactoryBean的典型配置 2.进入getObject方法 /** * Return a proxy. Invoked when clients obtain beans from ...

  9. Python常用模块大全

    Python常用模块大全 os模块: os.remove() 删除文件 os.unlink() 删除文件 os.rename() 重命名文件 os.listdir() 列出指定目录下所有文件 os.c ...

  10. 部分NLP工程师面试题总结

    面试题 https://www.cnblogs.com/CheeseZH/p/11927577.html 其他 大数据相关面试题 https://www.cnblogs.com/CheeseZH/p/ ...