Description

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way: 
4937775= 3*5*5*65837
The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers. 
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition. 
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

Output

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774
0

Sample Output

4937775
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std; int distsum(int n)
{
int ans=;
while(n)
{
ans+=n%;
n=n/;
}
return ans;
} bool isprime(int n)
{
if(n==) return false;
if(n==) return true;
for(int i=;i<=(int)sqrt(n+0.5)+;i++)
{
if(n%i==)
return false;
}
return true;
} int prime_factor(int n)
{
int i=;
queue <int> q;
while(n!=||n!=)
{
if(n%i==&&isprime(i))
{
q.push(i);
n/=i;
if(isprime(n))
{
q.push(n);break;
}
}
else i++;
} while(!q.empty())
{
int k=q.front();
q.pop();
cout<<k<<endl;
}
return ;
} int main()
{
int n;
while(cin>>n)
{
if(n==) break;
for(int i=n+;;i++)
{
if(isprime(i)) continue;
if(prime_factor_sum(i)==distsum(i))
{
cout<<i<<endl;break;
}
}
}
return ;
}

poj 1142 Smith Numbers的更多相关文章

  1. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  2. POJ 1142 Smith Numbers(分治法+质因数分解)

    http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...

  3. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  4. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  5. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  6. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  7. Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)

    一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...

  8. poj1142 Smith Numbers

    Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...

  9. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

随机推荐

  1. 又遇Release编译的一坑 -- 应用程序正常初始化(0xc000007b)失败。请单击“确定”,终止应用程序。

    项目中使用了xlslib库,以动态库形式编译,由于它没有生成链接库lib文件,所以官方提供的demo中有createDLL这个小程序用来生成lib文件.然而我又 no zuo no die了一次.   ...

  2. cdh 安装记录

    安装文件准备 CDH 下载地址:http://archive.cloudera.com/cdh5/parcels/latest/ 下载操作系统对应的版本: 1.CDH-5.3.0-1.cdh5.3.0 ...

  3. JDBC连接sql server数据库操作

    1.首先,先创建一个连接数据库的工具类: package gu.db.util; import java.sql.Connection; import java.sql.DriverManager; ...

  4. Form标签+Css基础

      一.Form表单标签 <form action="" method=""></form>    表单就是用来将用户的信息提交到服务器 ...

  5. yahoo给出的关于网站优化的建议

    1.使用CDN 内容分发服务器会根据用户的位置选择最近的服务器响应用户的请求,静态资源放在CDN的性能将提升20%左右. 2.设置Expires和Cache-Contral头 将静态资源的过期时间设置 ...

  6. C#基础1:Console类

    Console相关:   1.输出到控制台 Console.Write(输出的值);  表示向控制台直接写入字符串,不进行换行,可继续接着前面的字符写入.Console.WriteLine(输出的值) ...

  7. 【转】Jmeter(二)-使用代理录制脚本

    Jmeter脚本是以JMX格式为主 Jmeter也是支持录制的,支持第三方录制方式和代理录制方式. 1.第三方录制主要是通过badboy来录制,录制后另存为jmx格式即可. 2.Jmeter也有自己的 ...

  8. javascript深入理解js闭包(个人理解,大神勿喷)

    一.变量的作用域 要理解闭包,首先必须理解Javascript特殊的变量作用域. 变量的作用域无非就是两种:全局变量和局部变量. Javascript语言的特殊之处,就在于函数内部可以直接读取全局变量 ...

  9. MSMQ小Demo

    Demo基于http://www.cnblogs.com/zhili/p/MSMQ.html Server代码: using System.Messaging; using System.Text; ...

  10. selenium自动化遇见Cannot find class in classpath问题

    今天遇见了Cannot find class in classpath的问题, org.testng.TestNGException: Cannot find class in classpath: ...