DESCRIPTION
There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
INPUT
There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in
this row.
OUTPUT
First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
SAMPLE INPUT
6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7
SAMPLE OUTPUT
3 2 4 6
HINT
SOURCE
dupeng

题目地址:http://acm.hust.edu.cn/problem/show/1017

DLX 学习资料:

http://blog.sina.com.cn/s/blog_7d44748b01013fsf.html      图文并茂通过地址解释双向链表 (基础!)

http://wenku.baidu.com/view/d8f13dc45fbfc77da269b126.html  Knuth论文中文版

http://wenku.baidu.com/view/4ab7bd00a6c30c2259019eae.html  Dancing Links在搜索中的应用 momodi论文

http://www.cnblogs.com/grenet/p/3145800.html    强烈推荐!作者把全然覆盖问题搜索过程完整得用文字和图片写了下来,非常好懂。

參考:http://www.cnblogs.com/kuangbin/p/3752854.html  kuangbin模板

Dlx真的非常奇异,先是看资料,然后又研究模板,看完上面的链接资料对学习DLX非常有帮助。

最经典的就是全然覆盖问题。

本题就是给定一个由0,1元素组成的矩阵,问取出哪几行,能够使这几行构成的新矩阵,每列仅仅有一个1.

代码:

#include <iostream>
#include <stdio.h>
using namespace std;
const int maxnode=100010;
const int maxm=1010;
const int maxn=1010; struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[maxn];//行头节点
int S[maxm];//每列有多少个节点
int ansd,ans[maxn];//假设有答案,则选了ansd行,详细是哪几行放在ans[ ]数组里面,ans[0~ansd-1]; void init(int _n,int _m)
{
n=_n,m=_m;
for(int i=0;i<=m;i++)
{
S[i]=0;
U[i]=D[i]=i;//初始状态下,上下自己指向自己
L[i]=i-1;
R[i]=i+1;
}
R[m]=0,L[0]=m;
size=m;//编号,每列都有一个头节点,编号1-m
for(int i=1;i<=n;i++)
H[i]=-1;//每一行的头节点
} void link(int r,int c)//第r行,第c列
{
++S[Col[++size]=c];//第size个节点所在的列为c,当前列的节点数++
Row[size]=r;//第size个节点行位置为r
D[size]=D[c];//以下这四句头插法(图是倒着的?)
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0)
H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
} void remove(int c)//删除节点c,以及c上下节点所在的行,每次调用这个函数,都是从列头节点開始向下删除,这里c也能够理解为第c列
{ //由于第c列的列头节点编号为c
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
} void resume(int c)//恢复节点c,以及c上下节点所在的行(同上,也能够理解为从第c列的头节点開始恢复
{
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]]; //打这一行太纠结了 T T
L[R[c]]=R[L[c]]=c;
} bool dance(int d)//递归深度
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
if(S[i]<S[c])
c=i;
remove(c);//找到节点数最少的列,当前元素不是原图上0,1的节点,而是列头节点
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];//列头节点以下的一个节点
for(int j=R[i];j!=i;j=R[j])
remove(Col[j]);
if(dance(d+1))//找到,返回
return true;
for(int j=L[i];j!=i;j=L[j])
resume(Col[j]);
}
resume(c);
return false;
}
}; DLX x;
int n,m; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
x.init(n,m);
for(int i=1;i<=n;i++)
{
int cnt,j;
scanf("%d",&cnt);
while(cnt--)
{
scanf("%d",&j);
x.link(i,j);
}
}
if(!x.dance(0))
printf("NO\n");
else
{
printf("%d",x.ansd);
for(int i=0;i<x.ansd;i++)
printf(" %d",x.ans[i]);
printf("\n");
}
}
return 0;
}

[ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)的更多相关文章

  1. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  2. HUST 1017 Exact cover dance links

    学习:请看 www.cnblogs.com/jh818012/p/3252154.html 模板题,上代码 #include<cstdio> #include<cstring> ...

  3. HUST 1017 - Exact cover (Dancing Links 模板题)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...

  4. Dancing Link --- 模板题 HUST 1017 - Exact cover

    1017 - Exact cover Problem's Link:   http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否 ...

  5. hustoj 1017 - Exact cover dancing link

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 5851 Solved: 3092 ...

  6. HUST1017 Exact cover —— Dancing Links 精确覆盖 模板题

    题目链接:https://vjudge.net/problem/HUST-1017 1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 7673 次提交 3898 次 ...

  7. (简单) HUST 1017 Exact cover , DLX+精确覆盖。

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  8. HUST 1017 Exact cover(DLX精确覆盖)

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  9. [DLX] hust 1017 Exact cover

    题意: 给你N个包,要拿到M个东西(编号1~M每一个仅仅能有一个) 然后每一个包里有k个东西,每一个东西都有编号. 思路: 舞蹈连模板题 代码: #include"stdio.h" ...

随机推荐

  1. hdu3033(变形分组背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3033 题意:Iserlohn要买鞋,有k种牌子,每种牌子至少买一双鞋子.每双鞋子有标价跟实际价值.求用 ...

  2. [WPF]使用Pack URI路径訪问二进制资源

    一.路径格式定义 完整的URI定义为: pack://application,,,[/可选程序集名称;][可选版本;][目录名称/]文件名 缩略后的写法是: [目录名称/]文件名 二.在XAML代码中 ...

  3. codeforces#256DIV2 D题Multiplication Table

    题目地址:http://codeforces.com/contest/448/problem/D 当时是依照找规律做的,规律倒是找出来了,可是非常麻烦非常麻烦. . 看到前几名的红名爷们3分钟就过了, ...

  4. Nutch+HBase

    Nutch+HBase 当我们为nutch的架构发愁的时候,nutch的开发人员送来了nutchbase.我一些简单的测试表明,在hadoop0.20.1和hbase0.20.2上,稍加修改可以运行起 ...

  5. HTML5游戏开发进阶指南

    <HTML5游戏开发进阶指南> 基本信息 作者: (印)香卡(Shankar,A.R.)    译者: 谢光磊 出版社:电子工业出版社 ISBN:9787121212260 上架时间:20 ...

  6. C++ Primer 学习笔记_98_特殊的工具和技术 --优化内存分配

    特殊的工具和技术 --优化内存分配 引言: C++的内存分配是一种类型化操作:new为特定类型分配内存,并在新分配的内存中构造该类型的一个对象.new表达式自己主动执行合适的构造函数来初始化每一个动态 ...

  7. JAVA取整以及四舍五入

    JAVA取整以及四舍五入 import java.math.BigDecimal; //引入这个包 public class Test { public static void main(String ...

  8. discuz 插件开发 新手入门

    作为一个新手,目前也是刚刚玩转discuz的插件功能,好东西不敢独享,就拿出来大家一起分享入门的过程.现在网上很多关于discuz的插件教程都是很简单的教程,原因可能是这个东西是商业化的东西,本着分享 ...

  9. Java&Android反编工具打包

    Java&Android反编工具: 1.Eclipse反编插件:安装到Eclipse后,可以简要的查看jar包中的*.class; 2.DoAPK:反编*.apk为smali和一些资源文件,可 ...

  10. uvalive 2911 Maximum(贪心)

    题目连接:2911 - Maximum 题目大意:给出m, p, a, b,然后xi满足题目中的两个公式, 要求求的 xp1 + xp2 +...+ xpm 的最大值. 解题思路:可以将x1 + x2 ...