Raft一致性协议
分布式存储系统通常通过维护多个副本来进行fault-tolerance,提高系统的availability,带来的代价就是分布式存储系统的核心问题之一:维护多个副本的一致性。一致性协议就是用来干这事的,即使在部分副本宕机的情况下。Raft是一种较容易理解的一致性协议。一致性协议通常基于replicated state machines,即所有结点都从同一个state出发,都经过同样的一些操作序列,最后到达同样的state。
为了便于理解,Raft大概将整个过程分为三个阶段,leader election,log replication和commit(safety)。
每个server处于三个状态:leader,follower,candidate。正常情况下,所有server中只有一个是leader,其它的都是follower。server之间通过RPC消息通信。follower不会主动发起RPC消息。leader和candidate(选主的时候)会主动发起RPC消息。
Leader election
时间被分为很多连续的随机长度的term(一段时间),一个term由一个唯一的id标识。每个term一开始就进行leader election:
1. followers将自己维护的current_term_id加1。
2. 然后将自己的状态转成candidate。
3. 发送RequestVoteRPC消息(带上current_term_id) 给 其它所有server
这个过程会有三种结果:
1. 自己被选成了主。当收到了majority的投票后,状态切成leader,并且定期给其它的所有server发心跳消息(其实是不带log的AppendEntriesRPC)以告诉对方自己是current_term_id所标识的term的leader。每个term最多只有一个leader,term id作为logical clock,在每个RPC消息中都会带上,用于检测过期的消息,比如自己是一个过期的leader(term id更小的leader)。当一个server收到的RPC消息中的rpc_term_id比本地的current_term_id更大时,就更新current_term_id为rpc_term_id,并且如果当前state为leader或者candidate时,将自己的状态切成follower。如果rpc_term_id比本地的current_term_id更小,则拒绝这个RPC消息。
2. 别人成为了主。如1所述,当candidate在等待投票的过程中,收到了大于或者等于本地的current_term_id的声明对方是leader的AppendEntriesRPC时,则将自己的state切成follower,并且更新本地的current_term_id。
3. 没有选出主。当投票被瓜分,没有任何一个candidate收到了majority的vote时,没有leader被选出。这种情况下,每个candidate等待的投票的过程就超时了,接着candidates都会将本地的current_term_id再加1,发起RequestVoteRPC进行新一轮的leader election。
投票策略:
每个server只会给每个term投一票,具体的是否同意和后续的Safety有关。
当投票被瓜分后,所有的candidate同时超时,然后有可能进入新一轮的票数被瓜分,为了避免这个问题,Raft采用一种很简单的方法:每个candidate的election timeout从150ms-300ms之间随机取,那么第一个超时的candidate就可以发起新一轮的leader election,带着最大的term_id给其它所有server发送RequestVoteRPC消息,从而自己成为leader,然后给他们发送心跳消息以告诉他们自己是主。
Log Replication
当leader被选出来后,leader就可以接受客户端发来的请求了,每个请求包含一条需要被replicated state machines执行的命令。leader会把它作为一个log entry,append到它的日志中,然后给其它的server发AppendEntriesRPC。当leader确定一个log entry被safely replicated了,就apply这条log entry到状态机中然后返回结果给客户端。如果某个follower宕机了或者运行的很慢,或者网络丢包了,则会一直给这个follower发AppendEntriesRPC直到日志一致。
当一条日志是commited时,leader才能决定将它apply到状态机中。Raft保证一条commited的log entry已经持久化了并且会被所有的server执行。
当一个新的leader选出来的时候,它的日志和其它的follower的日志可能不一样,这个时候,就需要一个机制来保证日志是一致的。如下图所示,一个新leader产生时,集群状态可能如下:
最上面这个是新leader,a~f是follower,每个格子代表一条log entry,格子内的数字代表这个log entry是在哪个term上产生的。
新leader产生后,log就以leader上的log为准。其它的follower要么少了数据比如b,要么多了数据,比如d,要么既少了又多了数据,比如f。
需要有一种机制来让leader和follower对log达成一致,leader会为每个follower维护一个nextIndex,表示leader给各个follower发送的下一条log entry在log中的index,初始化为leader
的最后一条log entry的下一个位置。leader给follower发送AppendEntriesRPC消息,带着(term_id, (nextIndex-1)), term_id即(nextIndex-1)这个槽位的log entry的term_id,follower接收到AppendEntriesRPC后,会从自己的log中找是不是存在这样的log entry,如果不存在,就给leader回复拒绝消息,然后leader则将nextIndex减1,再重复,知道AppendEntriesRPC消息被接收。
以leader和b为例:
初始化,nextIndex为11,leader给b发送AppendEntriesRPC(6,10),b在自己log的10号槽位中没有找到term_id为6的log entry。则给leader回应一个拒绝消息。接着,leader将nextIndex减一,变成10,然后给b发送AppendEntriesRPC(6, 9),b在自己log的9号槽位中同样没有找到term_id为6的log entry。循环下去,直到leader发送了AppendEntriesRPC(4,4),b在自己log的槽位4中找到了term_id为4的log entry。接收了消息。随后,leader就可以从槽位5开始给b推送日志了。
Safety
1.哪些follower有资格成为leader?
Raft保证被选为新leader的server拥有所有的已经committed的log entry,这与ViewStamped Replication不同,后者不需要这个保证,而是通过其他机制从follower拉取自己没有的commited的log entry。
这个保证是在RequestVoteRPC阶段做的,candidate在发送RequestVoteRPC时,会带上自己的最后一条log entry的term_id和index,server在接收到RequestVoteRPC消息时,如果发现自己的日志比RPC中的更新,就拒绝投票。日志比较的原则是,如果本地的最后一条log entry的term id更大,则更新,如果term id一样大,则日志更多的更大(index更大)。
2. 哪些log entry被认为是commited?
两种情况:
1. leader正在replicate当前term即term2的log entry给其它follower,一旦leader确认了这条log entry被majority写盘了,这条log entry就被认为是committed。如图a,S1作为当前term即term2的leader,log index为2的日志被majority写盘了,这条log entry被认为是commited
2. leader正在replicate更早的term的log entry给其它follower。图b的状态是这么出来的:
S1作为term2的leader,给S1和S2 replicate完log index=2的日志后crash,当前状态为:
S1 1 2 宕机
S2 1 2
S3 1
S4 1
S5 1
S5被选为term3的leader(由于S5的最后一条log entry比S3,S4的最后一条log entry更新或一样新,接收到S3,S4,S5的投票),自己产生了一条term3的日志,没有给任何人复制,就crash了,当前状态如下:
S1 1 2
S2 1 2
S3 1
S4 1
S5 1 3 宕机
接着S1重启后,又被选为term4的leader(接收到S1,S2,S3的投票,文中没有指出S4?),然后S1给S3复制了log index为2的log entry,当前状态如下:
S1 1 2
S2 1 2
S3 1 2
S4 1
S5 1 3 宕机
这个时候S5重启,被选为了term5的主(接收了S2,S3,S4,S5的投票),那么S5会把log index为2的日志3复制给其它server,那么日志2就被overwrite了。
所以虽然这里日志2被majority的server写盘了,但是并不代表它是commited的。
对commit加一个限制:主的当前term的至少一条log entry被majority写盘
如:c图中,就是主的当前term 4的一条log entry被majority写盘了,假设这个时候S1宕机了,S5是不可能变成主的。因为S2和S3的log entry的term为4,比S5的3大。
关于算法的正确性证明见:Raft implementations
Log Compaction
在实际的系统中,不能让日志无限增长,否则系统重启时需要花很长的时间进行回放,从而影响availability。Raft采用对整个系统进行snapshot来处理,snapshot之前的日志都可以丢弃。
snapshot技术在Chubby和ZooKeeper系统中都有采用。
每个server独立的对自己的系统状态进行snapshot,并且只能对已经committed log entry(已经apply到了状态机)进行snapshot,snapshot有一些元数据,包括last_included_index,即snapshot覆盖的最后一条commited log entry的 log index,和last_included_term,即这条日志的termid。这两个值在snapshot之后的第一条log entry的AppendEntriesRPC的consistency check的时候会被用上,之前讲过。一旦这个server做完了snapshot,就可以把这条记录的最后一条log index及其之前的所有的log entry都删掉。
snapshot的缺点就是不是增量的,即使内存中某个值没有变,下次做snapshot的时候同样会被dump到磁盘。
当leader需要发给某个follower的log entry被丢弃了(因为leader做了snapshot),leader会将snapshot发给落后太多的follower。或者当新加进一台机器时,也会发送snapshot给它。
发送snapshot使用新的RPC,InstalledSnapshot。
做snapshot有一些需要注意的性能点,1. 不要做太频繁,否则消耗磁盘带宽。 2. 不要做的太不频繁,否则一旦server重启需要回放大量日志,影响availability。系统推荐当日志达到某个固定的大小做一次snapshot。3. 做一次snapshot可能耗时过长,会影响正常log entry的replicate。这个可以通过使用copy-on-write的技术来避免snapshot过程影响正常log entry的replicate。
Cluster membership changes
Raft将有server加入集群或者从集群中删除也纳入一致性协议中考虑,避免由于下线老集群上线新集群而引起的不可用。集群的成员列表重配置也是一条log entry,log内容包含了集群成员列表。
老集群配置用Cold表示,新集群配置用Cnew表示。
当集群成员配置改变时,leader收到人工发出的重配置命令从Cold切成Cnew,leader 给其它server复制一条特殊的log entry给其它的server,内容包括Cold∪Cnew,一旦server收到了这条特殊的配置log entry,其后的log entry会被replicate到Cold∪Cnew中,一条log entry被认为是committed的需要满足这条日志既被Cold的majority写盘,也被Cnew的majority写盘。一旦Cold∪Cnew这条log entry被确认为committed,leader就会产生一条只包含了Cnew的log entry,同样复制给所有server,server收到log后,老集群的server就可以自动下线了。
Performance
横坐标代表没有leader的ms数,每条线代表election timeout的随机取值区间。
上图说明只要给个5ms的区间,就能避免反复的投票被瓜分。超过10s没有leader的情况都是因为投票被瓜分的情况。
150-150ms的election timeout区间,没有主的时间平均287ms。
系统推荐使用150ms~300ms
参考资料:
In Search of an Understandable Consensus Algorithm
Raft一致性协议的更多相关文章
- 一文看尽 Raft 一致性协议的关键点
本文由 网易云 发布. 作者:孙建良 Raft 协议的发布,对分布式行业是一大福音,虽然在核心协议上基本都是师继 Paxos 祖师爷(Lamport) 的精髓,基于多数派的协议.但是 Raft 一致 ...
- 一文带你了解 Raft 一致性协议的关键点
此文已由作者孙建良授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Raft 协议的发布,对分布式行业是一大福音,虽然在核心协议上基本都是师继 Paxos 祖师爷(lampor ...
- Raft 一致性协议算法 《In search of an Understandable Consensus Algorithm (Extended Version)》
<In search of an Understandable Consensus Algorithm (Extended Version)> Raft是一种用于管理日志复制的一致性算 ...
- 分布式一致性协议Raft原理与实例
分布式一致性协议Raft原理与实例 1.Raft协议 1.1 Raft简介 Raft是由Stanford提出的一种更易理解的一致性算法,意在取代目前广为使用的Paxos算法.目前,在各种主流语言中都有 ...
- 分布式一致性协议之:Raft算法
一致性算法Raft详解 背景 熟悉或了解分布性系统的开发者都知道一致性算法的重要性,Paxos一致性算法从90年提出到现在已经有二十几年了,而Paxos流程太过于繁杂实现起来也比较复杂,可能也是以为过 ...
- 搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法
搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法 2PC 由于BASE理论需要在一致性和可用性方面做出权衡,因此涌现了很多关于一致性的算法和协议.其中比较著名的有二阶提交协议(2 Phas ...
- [转帖]分布式一致性协议介绍(Paxos、Raft)
分布式一致性协议介绍(Paxos.Raft) https://www.cnblogs.com/hugb/p/8955505.html 两阶段提交 Two-phase Commit(2PC):保证一个 ...
- 分布式一致性协议 Raft
分布式领域,CP模型下 数据一致性协议至关重要,不然两边数据不一致容易出现数据读混乱问题.像Etcd Consul zookeeper Eureka ,Redis集群方案这些中间件 都有一致性算法来 ...
- 浅谈 Raft 分布式一致性协议|图解 Raft
前言 本篇文章将模拟一个KV数据读写服务,从提供单一节点读写服务,到结合分布式一致性协议(Raft)后,逐步扩展为一个分布式的,满足一致性读写需求的读写服务的过程. 其中将配合引入Raft协议的种种概 ...
随机推荐
- 《C#图解教程》读书笔记之三:方法
本篇已收录至<C#图解教程>读书笔记目录贴,点击访问该目录可获取更多内容. 一.方法那些事儿 (1)方法的结构:方法头—指定方法的特征,方法体—可执行代码的语句序列: (2)方法的调用:参 ...
- [.net 面向对象编程基础] (14) 重构
[.net 面向对象编程基础] (14) 重构 通过面向对象三大特性:封装.继承.多态的学习,可以说我们已经掌握了面向对象的核心.接下来的学习就是如何让我们的代码更优雅.更高效.更易读.更易维护.当然 ...
- java提高篇(十一)-----强制类型转换
在java中强制类型转换分为基本数据类型和引用数据类型两种,这里我们讨论的后者,也就是引用数据类型的强制类型转换. 在Java中由于继承和向上转型,子类可以非常自然地转换成父类,但是父类转换成子类则需 ...
- Linux head和tail命令
200 ? "200px" : this.width)!important;} --> 介绍 head和tail是一组想对应的命令,默认分别显示文件的开头和末尾10行记录. ...
- 【重要更新】Senparc.Weixin SDK v4.4 升级说明
本次更新同时影响以下所有Senparc.Weixin相关版本的dll: Senparc.Weixin.dll 升级到 v4.4.2(重要) Senparc.Weixin.MP.dll 升级到 v13. ...
- Git学习笔记(1)——安装,配置,创建库,文件添加到库
初次接触git,为了记忆深刻,把学习的简单流程记录下来. 本文记录了Git在Ubuntu上的安装,配置,以及创建版本库和往库中添加文件的过程. 1.Git的安装:(Ubuntu-Linux非常友好的安 ...
- Mysql跨表更新 多表update sql语句总结
Mysql跨表更新一直是大家所关心的话题,本文介绍mysql多表 update在实践中几种不同的写法 假定我们有两张表,一张表为Product表存放产品信息,其中有产品价格列Price:另外一张表是P ...
- CocoaPods 使用
为什么要使用这个玩意呢,最近在使用swift开发项目,使用 swift 开源库的时候,在git上下载后居然不知道哪些是必须文件,还要思考下,看看哪些是需要的(不像原来oc开源库,一目了然),网上使用d ...
- Android开发学习之路-使用Handler和Message更新UI
在Android中,在非主线程中更新UI控件是不安全的,app在运行时会直接Crash,所以当我们需要在非主线程中更新UI控件,那么就需要用到Handler和Message来实现 Demo中,使用到一 ...
- salesforce 零基础开发入门学习(六)简单的数据增删改查页面的构建
VisualForce封装了很多的标签用来进行页面设计,本篇主要讲述简单的页面增删改查.使用的内容和设计到前台页面使用的标签相对简单,如果需要深入了解VF相关知识以及标签, 可以通过以下链接查看或下载 ...