Y组合子:\f.(\x.f(xx))(\x.f(xx)),接受一个函数,返回一个高阶函数

Y组合子用于生成匿名递归函数。

什么叫匿名递归函数,考虑以下C语言递归函数

int sum(int n)
{
return n == 0 ? 0 : n + sum(n-1);
}

这个函数在内部递归调用了自身,调用自身需要函数本体的名字,这个函数叫sum,sum内部用名字sum,递归调用了自己

在lambda演算中,可以写成类似的表达式sum = \x. x == 0 ? 0 : sum x

但是对于一个lambda表达式,他本身是匿名的,lambda在定义的过程中引用了自身,就算是C++,这样的lambda表达式也是不成立的

auto sum = [](int n) {
return n == 0 ? 0 : n + sum(n-1);
};

lambda表达式本身是不具名的,我们需要绕开这个限制。

一种可能的解决办法是使用高阶函数,用另一个函数把上面的sum包装一下:它接受一个函数f,并返回一个函数,这个函数接受x,判断递归终点,或调用f继续递归:

G = \f. \x. x == 0 ? 0 : f (x-1)

写成C++是这样的

auto G = [](function<int(int)> f) {
return [&](int x) {
return x == 0 ? : 0 : x + f(x-1);
};
};

现在我们发现,当有一个函数f使得G(f) = [](int x){return x == 0 ? 0 : x + f(x-1);} = f的时候,这个f正好是我们需要的匿名递归函数sum

G(f) = f,眼熟吗,还记得不动点这个概念吗,我们需要的匿名递归函数sum就是函数G的不动点

求解这个不动点sum,我们即可获得一个匿名递归函数,如何求解见附

最后的结果:sum = YG,Y和G前面已知,这样,sum是一个签名为int(int)的函数,是一个匿名递归函数

Y组合子也称不动点组合子,用这个方法可以求解一切匿名递归函数。

附:sum = YG使得G(sum) = sum的证明:

证明:对于任意G,G(YG) = YG

令W = \x. G(xx), X = WW //这个令真的太TM绝了,反正我是没想到

有X = WW = (\x. G(xx))W = G(WW) = G(X)

又因为YG = (\x. G(xx))(\x. G(xx)) = WW = X

所以G(X) = X就是G(YG) = YG

证毕

Lambda演算 - 简述Y组合子的作用的更多相关文章

  1. Y组合子

    Y组合子 Y组合子的用处 作者:王霄池链接:https://www.zhihu.com/question/21099081/answer/18830200来源:知乎著作权归作者所有.商业转载请联系作者 ...

  2. 大到可以小说的Y组合子(二)

    问:上一回,你在最后曾提到"抽象性不足",这话怎么说? 答:试想,如果现在需要实现一个其它的递归(比如:Fibonacci),就必须把之前的模式从头套一遍,然后通过fib_make ...

  3. Racket中使用Y组合子

    关于Y组合子,网上已经介绍很多了,其作用主要是解决匿名lambda的递归调用自己. 首先我们来看直观的递归lambda定义, 假设要定义阶乘的lambda表达,C#中需要这么定义 Func<in ...

  4. 大到可以小说的Y组合子(一)

    问:上回乱扯淡了一通,这回该讲正题了吧. 答:OK. 先来列举一些我参考过,并从中受到启发的文章. (1.)老赵的一篇文章:使用Lambda表达式编写递归函数 (2.)装配脑袋的两篇文章:VS2008 ...

  5. 大到可以小说的Y组合子(三)

    答:关于Fix的问题你fix了吗? 问:慢着,让我想想,上次留下个什么问题来着?是说我们有了一个求不动点的函数Fix,但Fix却是显式递归的,是吧? 答:有劳你还记的这个问题. 问:Fix的参与背离了 ...

  6. 大到可以小说的Y组合子(零)

    问:啊!我想要一个匿名的递归… 答:Y(音同Why)… … … 问:作为一位命令式语言的使用者,为什么会突然折腾起Y组合子呢? 答:的确,这事儿要从很久以前的几次搁浅开始说起…上学的时候,从来没有接触 ...

  7. 简单易懂的程序语言入门小册子(4):基于文本替换的解释器,递归,如何构造递归函数,Y组合子

    递归.哦,递归. 递归在计算机科学中的重要性不言而喻. 递归就像女人,即令人烦恼,又无法抛弃. 先上个例子,这个例子里的函数double输入一个非负整数$n$,输出$2n$. \[ {double} ...

  8. Haskell语言学习笔记(79)lambda演算

    lambda演算 根据维基百科,lambda演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义.函数如何被应用以 ...

  9. [学习] 从 函数式编程 到 lambda演算 到 函数的本质 到 组合子逻辑

    函数式编程 阮一峰 <函数式编程初探>,阮一峰是<黑客与画家>的译者. wiki <函数编程语言> 一本好书,<计算机程序的构造与解释>有讲到schem ...

随机推荐

  1. linux命令行将已有项目提交到github

    之前用git是在windows下用git的图形化界面进行操作的,这次有一个写了几天的小项目想提交到git上,linux命令行下面没有图形化的界面,所以全部需要git命令来操作. 实践之后,主要是下面几 ...

  2. 贝叶斯网引论 by 张连文

    贝叶斯网(Bayesian networks)是一种描述随机变量之间关系的语言,构造贝叶斯网是为了概率推理,理论上概率推理基于联合概率分布就行了,但是联合概率分布(基于表)的复杂度会呈指数增长,贝叶斯 ...

  3. MySQL集群在断网后再启动报"Unable to start missing node group"问题处理

    总所周知,MySQL集群又名ndb cluster,而ndb就是network based database的简称,数据库节点之间依靠网络来通信和保证数据分块间的一致性.今天由于机房交换机损坏,导致集 ...

  4. android颜色指列表

    <?xml version="1.0" encoding="utf-8" ?> 2 <resources> 3 <color na ...

  5. iOS设计模式和机制之观察者模式

    观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象.这个主题对象在状态上发生变化时,会通知所有观察者对象,使它们能够自动更新自己. 观察者模式的思想:当某对象改变时,观察者会 ...

  6. Android驱动开发前的准备(四)

    源代码的下载和编译 4.1 下载.编译和测试Android源代码 4.2下载和编译linux内核源代码 4.1.1 配置Android源代码下载环境 (1) 创建一个用于存放下载脚本文件的目录 # m ...

  7. 破解版windows 7(旗舰版)下安装并使用vagrant统一开发环境

    参考百度经验:http://jingyan.baidu.com/article/5553fa82c158bb65a23934be.html,事先对win7进行破解后的三个文件进行还原,否则会导致vir ...

  8. SDWebImage

    SDWebImage 加载图片的流程 入口 setImageWithURL:placeholderImage:options: 会先把 placeholderImage 显示,然后 SDWebImag ...

  9. final评价Ⅱ

    1.飞天小女警: 礼物挑选这个项目相比之前的发布功能更完善了些,但是整体界面还是不太美观,用户界面上呈现出的选项字不够清晰,使用起来不是很方便,但是增加了猜你喜欢的功能,可以根据用户的浏览记录猜测用户 ...

  10. [NOIP2013] 火柴排队(归并排序)

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...