洛谷P4174 [NOI2006]最大获利(最大流)
题目描述
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。
在前期市场调查和站址勘测之后,公司得到了一共 N 个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第 i个通讯中转站需要的成本为 PiP_iPi (1≤i≤N)。
另外公司调查得出了所有期望中的用户群,一共 M 个。关于第 i 个用户群的信息概括为 AiA_iAi , BiB_iBi 和 CiC_iCi :这些用户会使用中转站 A i 和中转站 B i 进行通讯,公司可以获益 CiC_iCi 。(1≤i≤M, 1≤AiA_iAi , BiB_iBi ≤N)
THU 集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)
输入输出格式
输入格式:
输入文件中第一行有两个正整数 N 和 M 。
第二行中有 N 个整数描述每一个通讯中转站的建立成本,依次为 P1,P2,…,PNP_1 , P_2 , …,P_NP1,P2,…,PN 。
以下 M 行,第(i + 2)行的三个数 Ai,BiA_i , B_iAi,Bi 和 CiC_iCi 描述第 i 个用户群的信息。
所有变量的含义可以参见题目描述。
输出格式:
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
输入输出样例
说明
样例:选择建立 1、2、3 号中转站,则需要投入成本 6,获利为 10,因此得到最大收益 4。
题解:这据说是一道最大权闭合子图...
但是我根本不知道这是什么东西qwq
大概的思路是先将所有客户的贡献加起来,然后此时我们要减去的有两个东西:届不到的用户和届到的中转站
根据这类题的思路
将源点向中转站建cost的边,中转站向用户建inf的边,用户向汇点建cost的边
接着跑一遍dinic,得到的就是要减掉的数
话说当前弧优化跑的真是飞快
代码如下:
#pragma GCC optimize(3,"inline")
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 500050
#define inf 0x3f3f3f3f
using namespace std; int v[N],w[N],pos[N],nxt[N],cnt=-,deep[],cur[N];
int n,m,tmp; int addedge(int from,int to,int cost)
{
v[++cnt]=to;
w[cnt]=cost;
nxt[cnt]=pos[from];
pos[from]=cnt;
} int add(int from,int to,int cost)
{
addedge(from,to,cost);
addedge(to,from,);
} int bfs(int s,int t)
{
queue<int> q;
memset(deep,,sizeof(deep));
deep[s]=;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=pos[u];~i;i=nxt[i])
{
if(w[i]>&&(!deep[v[i]]))
{
deep[v[i]]=deep[u]+;
q.push(v[i]);
}
}
}
return deep[t]!=;
} int dfs(int s,int t,int dist)
{
if(s==t) return dist;
for(int &i=cur[s];~i;i=nxt[i])
{
if(w[i]!=&&deep[v[i]]==deep[s]+)
{
int di=dfs(v[i],t,min(dist,w[i]));
if(di>)
{
w[i]-=di;
w[i^]+=di;
return di;
}
}
}
return ;
} int dinic(int s,int t)
{
int ans=;
while(bfs(s,t))
{
for(int i=;i<=n+m+;i++)
{
cur[i]=pos[i];
}
while(int di=dfs(s,t,inf))
{
ans+=di;
}
}
return ans;
} long long anss; int main()
{
memset(nxt,-,sizeof(nxt));
memset(pos,-,sizeof(pos));
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&tmp);
add(,i,tmp);
}
int to1,to2,cost;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&to1,&to2,&cost);
add(to1,i+n,inf);
add(to2,i+n,inf);
add(i+n,n+m+,cost);
anss+=cost;
}
anss-=dinic(,n+m+);
printf("%lld\n",anss);
}
100%的数据中:N≤5 000,M≤50 000,0≤CiC_iCi ≤100,0≤PiP_iPi ≤100。
洛谷P4174 [NOI2006]最大获利(最大流)的更多相关文章
- 洛谷 P4174 [NOI2006]最大获利 解题报告
P4174 [NOI2006]最大获利 题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要 ...
- 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)
https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...
- [洛谷P4174][NOI2006]最大获利
题目大意:同Petya and Graph,数据范围改成$n\leqslant5\times10^3,m\leqslant5\times10^4$ 题解:同上 卡点:无 C++ Code: #incl ...
- P4174 [NOI2006]最大获利 (最大权闭合子图)
P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...
- P4174 [NOI2006]最大获利(网络流)
P4174 [NOI2006]最大获利 还是最大权闭合子图的题 对于每个中转站$k$:$link(k,T,P_k)$ 对于每个用户$i$.中转站$A_i,B_i$.贡献$C_i$ $link(S,i, ...
- [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码
[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...
- NOI2006 最大获利 洛谷P4174
洛谷题目传送门! 题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就 ...
- BZOJ 1497: [NOI2006]最大获利( 最大流 )
下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...
- 洛谷 1004 dp或最大费用流
思路: dp方法: 设dp[i][j][k][l]为两条没有交叉的路径分别走到(i,j)和(k,l)处最大价值. 则转移方程为 dp[i][j][k][l]=max(dp[i-1][j][k-1][l ...
随机推荐
- JS的事件流的概念
事件的概念: HTML中与javascript交互是通过事件驱动来实现的,例如鼠标点击事件.页面的滚动事件onscroll等等,可以向文档或者文档中的元素添加事件侦听器来预订事件.想要知道这些事件是在 ...
- HBase快速上手
一.创建单节点HBase实例 https://hbase.apache.org/book.html#quickstart (一)jdk版本要求Java: HBase Version JDK 7 JDK ...
- preprocess
1,宏定义,有参宏,无参宏,宏定义实现的是定义一个符号常量; 条件编译3种方式,文件包含含义; 不带参数的宏定义;既用一个指定的的标识符来代替一个字符串; #define RUIY 10000000 ...
- Proof for Floyd-Warshall's Shortest Path Derivation Algorithm Also Demonstrates the Hierarchical Path Construction Process
(THIS BLOG WAS ORIGINALLY WRTITTEN IN CHINESE WITH LINK: http://www.cnblogs.com/waytofall/p/3732920. ...
- leetcode671
class Solution { public: vector<int> V; void postTree(TreeNode* node) { if (node != NULL) { V. ...
- Django timezone问题
今天用django做个blog碰到了问题,提交内容后浏览提示Database returned an invalid value in QuerySet.datetimes(). Are time z ...
- TRegEx 正则表达式
TRegEx #include <System.RegularExpressions.hpp> void __fastcall TForm1::Button1Click(TObject * ...
- Struts2 的核心、执行原理
转自: http://www.cnblogs.com/xiadongqing/p/5240615.html 在学习struts2之前,首先我们要明白使用struts2的目的是什么?它能给我们带来什么样 ...
- js 阻止事件捕获
1.支持W3C标准的浏览器在添加事件时用addEventListener(event,fn,useCapture)方法,基中第3个参数 useCapture是一个Boolean值,用来设置事件是在事件 ...
- 4.Hadoop集群搭建之启动
配置好Hadoop.HDFS.YARN.Zookeeper集群后,需要按照顺序启动. 前期准备 配置好Hadoop.HDFS.YARN.Zookeeper集群 先stop掉所有的hadoop服务 使用 ...