数据分析之Numpy-数组计算
引言 :
数据分析 : 就是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出研究对象的内在规律 .
数据分析三剑客 : Numpy 数组计算
Pandas 表计算与数据分析
Matplotlib 绘图和可视化
一 . NumPy
1 . NumPy(Numerical Python) 是 python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算 , 此外也针对数组运算提供大量的数学函数库
2 . NumPy是高性能科学计算和分析的
- ndarray : 一个多维数组结构,高效且节省空间
- 无需循环对整体数据进行快速运算的科学函数
- * 读写磁盘数据的工具以及用于操作内存映射文件的工具
- * 线性代数 , 随机数生成和博里叶变换功能
- * 用于集成C , C++ 等代码的工具
3 . 安装方法 :
pip install numpy
二 . 创建ndarray
注意 : 示例均是在jupyter上演示的
1 . 使用 np.array() 创建
# 导包
# 通常都将 numpy简化成np
import numpy as np
1) . 一维数组的创建
np.array([1,2,3,4.5])

2) . 二维数组的创建 np.array([[1,2,3,4],[5,6,7,8]])

注意 :
- numpy默认ndarray的所有元素的类型是相同的
- 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int

3) . 使用matplotlib.pyplot获取一个numpy数组,数据来源于图片


2 . 使用 np 的 routines 函数创建
创建ndarray:
array() 将列表转换为数组,可选择显式指定dtype
arange() range的numpy版,支持浮点数
linspace() 类似arange(),第三个参数为数组长度
zeros() 根据指定形状和dtype创建全0数组
ones() 根据指定形状和dtype创建全1数组
empty() 根据指定形状和dtype创建空数组(随机值)
eye() 根据指定边长和dtype创建单位矩阵
例如 :

三 . ndrray---多维数组对象
1 . 常用属性 :
- T 数组的转置(对高维数组而言)

- dtype 数组元素的数据类型
- size 数组元素的个数
- ndim 数组的维数
- shape 数组的维度大小(以元组形式)

2 . 常用方法 :
array.shape array的规格
array.ndim
array.dtype array的数据规格
numpy.zeros(dim1,dim2) 创建dim1*dim2的零矩阵
numpy.arange
numpy.eye(n) /numpy.identity(n) 创建n*n单位矩阵
numpy.array([…data…], dtype=float64 )
array.astype(numpy.float64) 更换矩阵的数据形式
array.astype(float) 更换矩阵的数据形式
array * array 矩阵点乘
array[a:b] 切片
array.copy() 得到ndarray的副本,而不是视图
array [a] [b]=array [ a, b ] 两者等价
name=np.array(['bob','joe','will']) res=name==’bob’ res= array([ True, False, False], dtype=bool)
data[True,False,…..] 索引,只索取为True的部分,去掉False部分
通过布尔型索引选取数组中的数据,将总是创建数据的副本。
data[ [,,,] ] 索引,将第4,,,6行摘取出来,组成新数组
data[-]=data[data.__len__()-]
numpy.reshape(a,b) 将a*b的一维数组排列为a*b的形式
array([a,b,c,d],[d,e,f,g]) 返回一维数组,分别为[a,d],[b,e],[c,f],[d,g]
array[ [a,b,c,d] ][:,[e,f,g,h] ]=array[ numpy.ix_( [a,b,c,d],[e,f,g,h] ) ]
array.T array的转置
numpy.random.randn(a,b) 生成a*b的随机数组
numpy.dot(matrix_1,matrix_2) 矩阵乘法
array.transpose( (,,,etc.) ) 对于高维数组,转置需要一个由轴编号组成的元组
四 . ndarray的基本操作
、数组和标量之间的运算
a+ a* //a a**0.5
、同样大小数组之间的运算
a+b a/b a**b
、数组的索引:
一维数组:a[]
多维数组:
列表式写法:a[][]
新式写法:a[,] (推荐)
数组的切片:
一维数组:a[:] a[:] a[:] =
多维数组:a[:, :] a[:,:] a[:,]
、强调:与列表不同,数组切片时并不会自动复制,在切片数组上的修改会影响原数组。 【解决方法:copy()】
1 . 索引
一维与列表完全一致 , 多维同理

2 . 切片
1) . 一维与列表完全相同 , 多维同理

2) . 将数据进行反转 , 例如 : [1,2,3] --> [3,2,1]

3) . 对图片进行操作



3 . 变形
使用 reshape()函数,注意一个参数是 --- tuple !

4 . 级联
np.concatenate()


级联需要注意的点:
- 级联的参数是列表:一定要加中括号或小括号
- 维度必须相同
- 形状相符:在维度保持一致的前提下,如果进行横向(axis=1)级联,必须保证进行级联的数组行数保持一致。如果进行纵向(axis=0)级联,必须保证进行级联的数组列数保持一致。
- 可通过axis参数改变级联的方向
5 . 切割
给图片进行切割
原图片 :



五 . 数学和统计方法
常用函数:
sum 求和
cumsum 求前缀和
mean 求平均数
std 求标准差
var 求方差
min 求最小值
max 求最大值
argmin 求最小值索引
argmax 求最大值索引

六 . ndarray的排序
np.sort() 和 ndarray.sort() 的区别 :
- np.sort() 不改变输入
- ndarray.sort() 本地处理,不占用空间,但改输入


七 . 随机数生成
随机数生成函数在np.random子包内
常用函数 :
- rand 给定形状产生随机数组(0到1之间的数)
- randint 给定形状产生随机整数
- choice 给定形状产生随机选择
- shuffle 与random.shuffle相同
- uniform 给定形状产生随机数组
数据分析之Numpy-数组计算的更多相关文章
- Python数据分析之numpy数组全解析
1 什么是numpy numpy是一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于大型.多维数据上执行数值计算. 在NumPy 中,最重要的对象是 ...
- NumPy(数组计算)
一.介绍 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.主要功能 1)ndarray,一个多维数组结构,高效且节省空间2)无需循环对整组数据进行快速运算的数 ...
- Numpy数组计算
NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能 ndarray,一个多维数组结构,高效且节省空间 无需循环对整组数据进行快速运算的数学函数 ...
- NumPy:数组计算
一.MumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环 ...
- numpy数组常用计算
在说numpy库数组的计算之前先来看一下numpy数组形状的知识: 创建一个数组之后,可以用shape来查看其形状,返回一个元组 例如:a = np.array([[1, 2, 3], [4, 5, ...
- numpy之数组计算
# coding=utf-8import numpy as npimport random #数组和数字计算,进行广播计算,包括加减乘除 t8 = t8 +2 print(t8,t8.dtype,t8 ...
- Python数据分析工具库-Numpy 数组支持库(一)
1 Numpy数组 在Python中有类似数组功能的数据结构,比如list,但在数据量大时,list的运行速度便不尽如意,Numpy(Numerical Python)提供了真正的数组功能,以及对数据 ...
- 科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数)
Mlab了解 Mlab是Mayavi提供的面向脚本的api,他可以实现快速的三维可视化,Mayavi可以通过Mlab的绘图函数对Numpy数组建立可视化. 过程为: .建立数据源 .使用Filter( ...
- 数据分析入门——numpy类库基础知识
numpy类库是数据分析的利器,用于高性能的科学计算和数据分析.使用python进行数据分析,numpy这个类库是必须掌握的.numpy并没有提供强大的数据分析功能,而是它提供的ndarray数据结构 ...
随机推荐
- OK335xS 系统启动配置解析
OK335xS 系统启动配置解析 一.参考文档: AM335x ARM® Cortex™-A8 Microprocessors (MPUs) Technical Reference Manual 二. ...
- [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)
原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...
- 20165222 实验三 敏捷开发与XP实践
实验内容: 1.XP基础 2.XP核心实践 3.相关工具 二.具体实验内容 (一)代码规范格式化 总结:感觉就那个Code->Reformate Code代码重新格式化最好用,其他的我都点了下, ...
- LeetCode 760. Find Anagram Mappings
原题链接在这里:https://leetcode.com/problems/find-anagram-mappings/description/ 题目: Given two lists Aand B, ...
- 记录一些WPF常用样式方便以后复用(转)
TextBox文本框 <Style x:Key="TextBoxStyle1" BasedOn="{x:Null}" TargetType="{ ...
- http接口测试工具
2016-08-28 19:24:55 以全国天气预报为例 https://www.juhe.cn/docs/api/id/39/aid/132 (一)火狐的HttpRequester 在URL中填 ...
- cookie控制登陆时间
使用cookie实现永久登陆 1,在cookie里面保存账号密码然后和数据库核对(由于我没有使用数据库,就不用了 2,在cookie里面保存时间戳和账号使用加密解密(我也没有使用时间戳 思路,requ ...
- (转)[Android实例] 关于使用ContentObserver监听不到删除短信会话的解决方案
最近做通讯录的项目,需要实时监听短信的删除,就用到了观察者ContentObserver,怪异的事情就此发生,当我删除一条短信的时候,可以监听到,但是,当我删除整条短信的时候,就无法监听到,查了很多资 ...
- sourceTree 添加 ssh key 方法【转】
1.使用 git 客户的生成公私钥:id_rsa.id_rsa.pub 1.1设置Git的user name和email: $ git config --global user.name " ...
- Markdown初步使用
一.兼容 HTML Markdown 的理念是,能让文档更容易读.写和随意改.HTML 是一种发布的格式,Markdown 是一种书写的格式.就这样,Markdown 的格式语法只涵盖纯文本可以涵盖的 ...