算法优缺点

优点:在数据较少的情况下依然有效,可以处理多类别问题

缺点:对输入数据的准备方式敏感

适用数据类型:标称型数据

算法思想:

朴素贝叶斯

比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到。

朴素贝叶斯分类器中的一个假设是:每个特征同等重要

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。

函数

loadDataSet()

创建数据集,这里的数据集是已经拆分好的单词组成的句子,表示的是某论坛的用户评论,标签1表示这个是骂人的

createVocabList(dataSet)

找出这些句子中总共有多少单词,以确定我们词向量的大小

setOfWords2Vec(vocabList, inputSet)

将句子根据其中的单词转成向量,这里用的是伯努利模型,即只考虑这个单词是否存在

bagOfWords2VecMN(vocabList, inputSet)

这个是将句子转成向量的另一种模型,多项式模型,考虑某个词的出现次数

trainNB0(trainMatrix,trainCatergory)

计算P(i)和P(w[i]|C[1])和P(w[i]|C[0]),这里有两个技巧,一个是开始的分子分母没有全部初始化为0是为了防止其中一个的概率为0导致整体为0,另一个是后面乘用对数防止因为精度问题结果为0

classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)

根据贝叶斯公式计算这个向量属于两个集合中哪个的概率高

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#coding=utf-8
from numpy import *
def loadDataSet():
    postingList=[['my''dog''has''flea''problems''help''please'],
                 ['maybe''not''take''him''to''dog''park''stupid'],
                 ['my''dalmation''is''so''cute''I''love''him'],
                 ['stop''posting''stupid''worthless''garbage'],
                 ['mr''licks''ate''my''steak''how''to''stop''him'],
                 ['quit''buying''worthless''dog''food''stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec
#创建一个带有所有单词的列表
def createVocabList(dataSet):
    vocabSet = set([])
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet)
      
def setOfWords2Vec(vocabList, inputSet):
    retVocabList = [0* len(vocabList)
    for word in inputSet:
        if word in vocabList:
            retVocabList[vocabList.index(word)] = 1
        else:
            print 'word ',word ,'not in dict'
    return retVocabList
#另一种模型    
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec
def trainNB0(trainMatrix,trainCatergory):
    numTrainDoc = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCatergory)/float(numTrainDoc)
    #防止多个概率的成绩当中的一个为0
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    p0Denom = 2.0
    p1Denom = 2.0
    for in range(numTrainDoc):
        if trainCatergory[i] == 1:
            p1Num +=trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num +=trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)#处于精度的考虑,否则很可能到限归零
    p0Vect = log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive
      
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else
        return 0
          
def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love''my''dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid''garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
      
      
def main():
    testingNB()
      
if __name__ == '__main__':
    main()

http://www.qytang.com/cn/list/28/404.htm
http://www.qytang.com/cn/list/28/397.htm
http://www.qytang.com/cn/list/28/396.htm
http://www.qytang.com/cn/list/28/395.htm
http://www.qytang.com/cn/list/28/394.htm
http://www.qytang.com/cn/list/28/393.htm
http://www.qytang.com/cn/list/28/391.htm
http://www.qytang.com/cn/list/28/389.htm
http://www.qytang.com/cn/list/28/388.htm
http://www.qytang.com/cn/list/28/362.htm
http://www.qytang.com/cn/list/28/358.htm
http://www.qytang.com/cn/list/28/351.htm
http://www.qytang.com/cn/list/28/348.htm
http://www.qytang.com/cn/list/28/340.htm
http://www.qytang.com/cn/list/28/338.htm
http://www.qytang.com/cn/list/28/336.htm
http://www.qytang.com/cn/list/28/330.htm

http://www.qytang.com/
http://www.qytang.com/cn/list/29/

朴素贝叶斯算法的python实现-乾颐堂的更多相关文章

  1. 朴素贝叶斯算法的python实现方法

    朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...

  2. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  3. 朴素贝叶斯算法的python实现 -- 机器学习实战

    import numpy as np import re #词表到向量的转换函数 def loadDataSet(): postingList = [['my', 'dog', 'has', 'fle ...

  4. 朴素贝叶斯算法--python实现

    朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 ...

  5. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  6. 机器学习:python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...

  7. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  8. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  9. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

随机推荐

  1. 打包python文件,让文件程序化

    通过对源文件打包,Python程序可以在没有安装 Python的环境中运行,也可以作为一个独立文件方便传递和管理. 现在网上主流的打包方式有两种py2exe或者pyinstaller两款多平台的Pyt ...

  2. mqtt 异步消息 长连接 解析

    mqtt 是轻量级基于代理的发布/订阅的消息传输协议,设计思想是开放,简单,轻量级,且易于实现,这些优点使得他受用于任何环境 该协议的特点有: 使用发布/订阅消息的模式,提供一对多的消息发布,解除应用 ...

  3. OpenCV在debug和release模式下选择不同的lib静态库文件

    这两天测试OpenCV显示到MFC的Picture控件上,终于测试成功了,但是换到release模式下就会imread失败.发现问题是导入的lib问题. 因为VS如果通过Property Manage ...

  4. java web 程序---刷新页面次数

    <%! int count=0; %> <% count++; session.setAttribute("count",count); out.print(&q ...

  5. 运维平台cmdb开发-day2

    一 发送数据到api(Django的URL) 发送请求携带参数 requests.get(url='http://127.0.0.1:8000/api/asset/?k1=123') # <Qu ...

  6. 第七章 HTTP流量管理(二) URL 重写

    URL 重定向功能: 浏览器中输入  http://<host_name>:31380/v1/service-A/XXXX 经过下面的重定向,实际调用的是serviceA的/v1/XXXX ...

  7. SVN的学习

    SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于CVS,它采用了分支管理系统,它的设计目标就是取代CVS 为什么需要SVN 通常软件开发由多人协作开发,如果对代码文件.配置文 ...

  8. python‘s second day for me

    in     not in 主要用来检测一些字符串是否存在,或者避免一些字符串 while True: comment = input('请输入你的评论') if '顾清秋' in comment: ...

  9. MATLAB常用方法技巧总结

    ===================================================================================================M ...

  10. **Python的函数参数传递 和 global

    函数的参数到底是传递的一份复制的值,还是对内存的引用? 我们看下面一段代码: a = [] def fun(x): x.append(1) fun(a) print(a) 想想一下:如果传递的是一份复 ...