个人理解:就是TF的一种输入语法。

跟C语言的scanf(),C++的 cin>> 意思差不多,只是长相奇怪了点而已。

做完下面几个例子,基本也就适应了。

首先占位符申请空间;使用的时候,通过占位符“喂(feed)”给程序。然后程序就可以run了。。。

理解的不一定对,也不够深入,仅供参考。

import tensorflow as tf
  • tf.placeholder 占位符
  • tf.Session 会话

1. 输出 Hello World

Str = tf.placeholder(tf.string)

with tf.Session() as sess:
output = sess.run(Str, feed_dict={Str: 'Hello World !'})
print(output)
Hello World !

2.字符串拼接

Str1 = tf.placeholder(tf.string)
Str2 = tf.placeholder(tf.string)
Str3 = tf.placeholder(tf.string) Str = tf.string_join([Str1, Str2, Str3], separator=" ") with tf.Session() as sess:
output = sess.run(Str, feed_dict={Str1: 'I', Str2: 'like', Str3: 'TensorFlow !'})
print(output.decode())
I like TensorFlow !

3.浮点数乘积

Num1 = tf.placeholder(tf.float32)
Num2 = tf.placeholder(tf.float32) Result = tf.multiply(Num1, Num2) with tf.Session() as sess:
print(sess.run(Result, feed_dict={Num1:[.],Num2:[.]}))
[ .]

4.不用占位符,而用常量,也可完成。

只是验证一下,不推荐使用。初始化时的常量值将会被覆盖。

Num1 = tf.constant(1.0)
Num2 = tf.constant(2.0) Result = tf.multiply(Num1, Num2) with tf.Session() as sess:
print (sess.run(Result, feed_dict = {Num1: ., Num2: .}))
30.0

5.矩阵乘法

顺道学点新东西

定义两个矩阵,分别为 2*3 和 3*2矩阵,完成乘法运算

Matrix1 = tf.Variable(tf.random_normal([,]))
Matrix2 = tf.Variable(tf.truncated_normal([,])) Result = tf.matmul(Matrix1,Matrix2) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print ('Matrix1:')
print (sess.run(Matrix1))
print ('Matrix2:')
print (sess.run(Matrix2))
print ('Result:')
print (sess.run(Result))
Matrix1:
[[-1.00879586 0.61892986 -0.39552122]
[-0.83463311 -0.54309726 -0.31309164]]
Matrix2:
[[ 1.35596943 0.67712855]
[-0.09836598 -0.41533285]
[ 0.20601694 -0.14825489]]
Result:
[[-1.51026201 -0.88150841]
[-1.14281678 -0.29317039]]

使用 feed_dict完成矩阵乘法

表达看上去更繁琐。。。对比一下是为了更好地理解feed_dict。。。

Matrix1_Value = tf.random_normal([,])
Matrix2_Value = tf.truncated_normal([,]) Matrix1 = tf.placeholder(dtype=tf.float32,shape=[,])
Matrix2 = tf.placeholder(dtype=tf.float32,shape=[,]) Result = tf.matmul(Matrix1,Matrix2) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print ('Matrix1:')
print (sess.run(Matrix1_Value))
print ('Matrix2:')
print (sess.run(Matrix2_Value))
print ('Result:')
print (sess.run(Result,feed_dict={Matrix1:sess.run(Matrix1_Value),Matrix2:sess.run(Matrix2_Value)}))
Matrix1:
[[-0.6228959 0.04135797 -0.76592982]
[ 0.04814498 -0.98519218 -0.88335162]]
Matrix2:
[[-0.73028505 0.62314421]
[-0.64763296 -0.18691106]
[ 0.0198773 0.68467569]]
Result:
[[-1.66321826 -2.89716744]
[ 1.28906226 2.08242035]]

TensorFlow学习笔记(三)-- feed_dict 使用的更多相关文章

  1. tensorflow学习笔记三:实例数据下载与读取

    一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们 ...

  2. tensorflow学习笔记三----------基本操作

    tensorflow中的一些操作和numpy中的很像,下面列出几个比较常见的操作 import tensorflow as tf #定义三行四列的零矩阵 tf.zeros([3,4]) #定义两行三列 ...

  3. tensorflow学习笔记(三):实现自编码器

    黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机.Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代 ...

  4. tensorflow学习笔记(三十四):Saver(保存与加载模型)

    Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...

  5. tensorflow学习笔记(三十九):双向rnn

    tensorflow 双向 rnn 如何在tensorflow中实现双向rnn 单层双向rnn 单层双向rnn (cs224d) tensorflow中已经提供了双向rnn的接口,它就是tf.nn.b ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  8. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  9. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

  10. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

随机推荐

  1. 数论 - 119. Magic Pairs

    Magic Pairs Problem's Link Mean: 已知N.A0.B0,对于给定X.Y,若A0X+B0Y能被N整除,则AX+BY也能被N整除,求所有的A.B.(0<=A.B< ...

  2. Spring MVC属于SpringFrameWork的后续产品

    Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring MVC 分离了控制器.模型对象.分派器以及处理程序对象的角色,这种分离让它 ...

  3. php -- strpos,stripos,strrpos,strripos,strstr,strchr,stristr,strrchr

    strpos() 函数 语法: mixed strpos ( string $haystack , mixed $needle [, int $offset = 0 ] ) 查找 needle 在 h ...

  4. 【BZOJ】1028: [JSOI2007]麻将(贪心+暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1028 表示不会贪心QAQ 按顺序枚举,如果能形成刻子那么就形成刻子,否则形成顺子.orz 证明?:因 ...

  5. poj3301--Texas Trip(最小正方形覆盖)

    题目链接:点击打开链接 题目大意:给出n个点的坐标.如今要求一个正方形,全然包围n个点.而且正方形面积最小,求最小的正方形面积. 表示不能理解为什么面积随着角度的变化是一个单峰的函数,等待大牛告诉一下 ...

  6. redhat6.2 clang编译环境搭建(采用源码包编译安装)

    1. About clang++ office site:http://clang.llvm.org/ A major focus of our work on clang is to make it ...

  7. UEditor API 文档

    来源:http://www.e4dai.com/ueditor-api/#ue.editor http://www.e4dai.com/ueditor-api/ UE.Editor 依赖 editor ...

  8. C# 创建XML文件

    private void CreateXMLFile(string pathAndFileName) { XmlDocument doc = new XmlDocument(); XmlElement ...

  9. 通用性能测试过程模型GAME(A)

    1.3.1  Goal(定义目标) 制定一个明确而详细的测试目标是性能测试开始的第一步,也是性能测试成功的关键. 本步骤的开始时间:需求获取阶段 本步骤的输入:性能需求意向 本步骤的输出:明确的性能测 ...

  10. C++ 智能指针学习

     C++ Code  12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 ...