【题目】B. GCD of Polynomials

【题意】给定n,要求两个最高次项不超过n的多项式(第一个>第二个),使得到它们GCD的辗转次数为n。n<=150。

【算法】构造

【题解】辗转n次是最坏情况——每次辗转至少会使被模数的最高次项变到模数的最高次项-1,也就是必须构造两个多项式满足这种最坏情况。

eg.n=5,(5,4),(4,3),(3,2),(2,1),(1,0),(0,0)。

为了构造最坏情况,考虑模仿斐波那契数列进行构造:

p(0)=1,p(1)=x,p(n)=x*p(n-1)±p(n-2)。

这个数列的特点是,p(n)%p(n-1)=p(n-2),那么只要使用这个数列的pn和pn-1就能达到最坏情况。

其中±的意思是使系数满足要求,观察可知等价于%2。

#include<cstdio>
#define rep(i,j,k) for(int i=j;i<=k;i++)
int f[][],x=,n;
int main(){
scanf("%d",&n);
f[][]=f[][]=;
rep(i,,n){
x=-x;
rep(j,,i)f[x][j]=(f[x][j]+f[-x][j-])%;
}
printf("%d\n",n);
rep(i,,n)printf("%d ",f[x][i]);puts("");
printf("%d\n",n-);
rep(i,,n-)printf("%d ",f[-x][i]);
return ;
}

【CodeForces】901 B. GCD of Polynomials的更多相关文章

  1. 【CodeForces】901 C. Bipartite Segments

    [题目]C. Bipartite Segments [题意]给定n个点m条边的无向连通图,保证不存在偶数长度的简单环.每次询问区间[l,r]中包含多少子区间[x,y]满足只保留[x,y]之间的点和边构 ...

  2. 【数学】XMU 1597 GCD

    题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1597 题目大意: 求(am-bm, an-bn),结果取模1000000007,a,b ...

  3. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  4. 【BZOJ2820】YY的GCD

    [BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...

  5. 【LG2257】YY的GCD

    [LG2257]YY的GCD 题面 洛谷 题解 题目大意: 给定\(n,m\)求\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)为质数]\). 我们设\(f(x)=[x为 ...

  6. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  7. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  8. 【BZOJ4052】[Cerc2013]Magical GCD 乱搞

    [BZOJ4052][Cerc2013]Magical GCD Description 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续 ...

  9. 【codeforces】【比赛题解】#920 Educational CF Round 37

    [A]浇花 题意: 一个线段上每个整点都有花,有的点有自动浇花的喷水器,有问几秒能浇完所有的花. 题解: 大模拟 #include<cstdio> #include<cstring& ...

随机推荐

  1. 3dContactPointAnnotationTool开发日志(二七)

      今天的主要工作是把选中物体以及复制删除物体和右边三个面板联系起来,就是通过鼠标框选住物体,右边面板的对应项的颜色也会改变,而且通过右边面板也能控制物体的选中状态,被选中的物体成cyan青色,并且包 ...

  2. 【php】session读写锁

    事件:a文件中操作$_SESSION['start'] = 'yes'; sleep(100);  休眠100s 在这休眠的时间段中,b文件操作$_SESSION['start'] = 'no'; 结 ...

  3. 第202天:js---原型与原型链终极详解

    一. 普通对象与函数对象 JavaScript 中,万物皆对象!但对象也是有区别的.分为普通对象和函数对象,Object .Function 是 JS 自带的函数对象.下面举例说明 var o1 = ...

  4. 【EF】EF Code First Migrations数据库迁移

    1.EF Code First创建数据库 新建控制台应用程序Portal,通过程序包管理器控制台添加EntityFramework. 在程序包管理器控制台中执行以下语句,安装EntityFramewo ...

  5. bzoj4568-幸运数字

    题目 给出一棵树,每个节点上有权值\(a_i\),多次询问一条路径上选择一些点权值异或和最大值.\(n\le 2\times 10^4,q\le 2\times 10^5,0\le a_i\le 2\ ...

  6. http2.0可行性研究

     一.http2比http1有了更多新特性 1.使用了多路复用的技术,并发量支持比http1大几个数量级: 2.二进制分帧,改善网络延迟情况,提高传输速率: 3.支持header的数据压缩,数据体积变 ...

  7. TechDay公开课实录:PaddlePaddle车牌识别实战和心得

    车牌识别作为一种常见的图像识别的应用场景,已经是一个非常成熟的业务了,在传统的车牌识别中,可以使用字符分割+字符识别的方式来进行车牌识别,而深度学习兴起后,出现了很多端到端的车牌识别模型,不用分割字符 ...

  8. C++11线程使用总结

    std::thread 在 <thread> 头文件中声明,因此使用 std::thread 需包含 <thread> 头文件. <thread> 头文件摘要 &l ...

  9. 【bzoj4898】商旅

    Portal -->bzoj4898 Solution ​ 这题的话..首先答案的形式应该是\(01\)分数规划了 ​ 然后比较关键的一步在于,我们需要简化一下交易的过程 ​ 具体一点就是,我们 ...

  10. 框架----Django框架知识点整理

    一.cbv cbv(class-base-view) 基于类的视图 fbv(func-base-view) 基于函数的视图 a.基本演示 urlpatterns = [ url(r'^login.ht ...