如何使用 libtorch 实现 AlexNet 网络?

按照图片上流程写即可。输入的图片大小必须 227x227 3 通道彩色图片

// Define a new Module.
struct Net : torch::nn::Module {
Net() {
conv1 = torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 96, { 11,11 }).stride({4,4}));
conv2 = torch::nn::Conv2d(torch::nn::Conv2dOptions(96, 256, { 5,5 }).padding(2));
conv3 = torch::nn::Conv2d(torch::nn::Conv2dOptions(256, 384, { 3,3 }).padding(1));
conv4 = torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 384, { 3,3 }).padding(1));
conv5 = torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 256, { 3,3 }).padding(1)); fc1 = torch::nn::Linear(256*6*6,4096);
fc2 = torch::nn::Linear(4096, 4096);
fc3 = torch::nn::Linear(4096, 1000);
} // Implement the Net's algorithm.
torch::Tensor forward(torch::Tensor x) { x = conv1->forward(x);
x = torch::relu(x);
//LRN
x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
x = conv2->forward(x);
//LRN
x = torch::relu(x);
x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
x = conv3->forward(x);
x = torch::relu(x);
x = conv4->forward(x);
x = torch::relu(x);
x = conv5->forward(x);
x = torch::relu(x);
x = torch::max_pool2d(x, { 3,3 }, { 2,2 }); x = x.view({ x.size(0),-1 });
x = fc1->forward(x);
x = torch::relu(x);
x = torch::dropout(x,0.5,is_training()); x = fc2->forward(x);
x = torch::relu(x);
x = torch::dropout(x, 0.5, is_training()); x = fc3->forward(x); x = torch::log_softmax(x,1);
return x;
} // Use one of many "standard library" modules.
torch::nn::Conv2d conv1{ nullptr };
torch::nn::Conv2d conv2{ nullptr };
torch::nn::Conv2d conv3{ nullptr };
torch::nn::Conv2d conv4{ nullptr };
torch::nn::Conv2d conv5{ nullptr };
torch::nn::Linear fc1{ nullptr };
torch::nn::Linear fc2{ nullptr };
torch::nn::Linear fc3{ nullptr };
};

具体可参考这个

name: "AlexNet"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}

如何使用 libtorch 实现 AlexNet 网络?的更多相关文章

  1. AlexNet 网络详解及Tensorflow实现源码

    版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...

  2. 第十六节,卷积神经网络之AlexNet网络实现(六)

    上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...

  3. 第十五节,卷积神经网络之AlexNet网络详解(五)

    原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...

  4. Caffe训练AlexNet网络,精度不高或者为0的问题结果

    当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...

  5. 如何使用 libtorch 实现 LeNet 网络?

    如何使用 libtorch 实现 LeNet 网络? LeNet 网络论文地址: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

  6. AlexNet网络

    AlexNet 中包含了比较新的技术点,首次在CNN中成功应用了 ReLu .Dropout和LRN等Trick. 1.成功使用了Relu作为CNN的激活函数,并验证其效果在较深的网络中超过了Sigm ...

  7. AlexNet网络的Pytorch实现

    1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...

  8. 深入理解AlexNet网络

    原文地址:https://blog.csdn.net/luoluonuoyasuolong/article/details/81750190 AlexNet论文:<ImageNet Classi ...

  9. pytorch实现AlexNet网络

    直接上图吧 写网络就像搭积木

随机推荐

  1. FreeRTOS——1

    以下转载自安富莱电子: http://forum.armfly.com/forum.php FreeRTOS 的特点 FreeRTOS 的主要特点如下:1. 支持抢占式调度,合作式调度和时间片调度.2 ...

  2. mysql实现topN top1

    有时会碰到一些需求,查询分组后的最大值,最小值所在的整行记录或者分组后的top n行的记录,像在hive中是有窗口函数的,可以通过它们来实现,但是MySQL没有这些函数,可通过下面的方法来实现 1.准 ...

  3. [boostrap]debian下为arm创建debian和emdebian文件系统

    转自:http://www.cnblogs.com/qiaoqiao2003/p/3738552.html Debian系统本身包含对arm的支持,其包含的软件包最多,但是最终的文件系统要大一些. e ...

  4. socket相关函数中断后重试

    慢系统调用accept,read,write被信号中断时应该重试.对于accept,如果errno为ECONNABORTED,也应该重试. connect虽然也会阻塞,但被信号中断时不能立即重试,该s ...

  5. 常用gitignore模板

    作用是让临时文件和中间文件都不提交到代码库中 工程相关的.gitignore 放在根目录 常用 的有: Android.gitignore C++.gitignore C.gitignore CMak ...

  6. 浅谈Facebook的服务器架构(组图)

    导读:毫无疑问,作为全球最领先的社交网络,Facebook的高性能集群系统承担了海量数据的处理,它的服务器架构一直为业界众人所关注.CSDN博主yanghehong在他自己最新的一篇博客< Fa ...

  7. 关于为空必填js判断

    为了减少一不必要的if逻辑判断,自已写了一个方法 $(function () { $("#btnAdd").click(function () { var strLinValu = ...

  8. OSG 中 相交測试 模块 工作流程及原理

    主要涉及三个类: 1. osgUtil::PolytopeIntersector // 详细不同算法实现类 2. osgUtil::IntersectionVisitor //用来遍历节点树的每一个节 ...

  9. strust2的Action中validateXxx方法的用法

    Struts2控制部分时常需要验证来自页面的信息是否合法,若在执行struts2中 public String Xxx()方法操作数据库之前需要验证,ActionSupport提供了一个很好的方法.X ...

  10. freemarker0

    assign  用于为该模板页面 创建或替换一个顶层变量 或创建或替换多个顶层变量 列子如下 <#assign name=value [in namespacehash]>,指定一个名为n ...