如何使用 libtorch 实现 AlexNet 网络?
如何使用 libtorch 实现 AlexNet 网络?

按照图片上流程写即可。输入的图片大小必须 227x227 3 通道彩色图片
// Define a new Module.
struct Net : torch::nn::Module {
Net() {
conv1 = torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 96, { 11,11 }).stride({4,4}));
conv2 = torch::nn::Conv2d(torch::nn::Conv2dOptions(96, 256, { 5,5 }).padding(2));
conv3 = torch::nn::Conv2d(torch::nn::Conv2dOptions(256, 384, { 3,3 }).padding(1));
conv4 = torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 384, { 3,3 }).padding(1));
conv5 = torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 256, { 3,3 }).padding(1));
fc1 = torch::nn::Linear(256*6*6,4096);
fc2 = torch::nn::Linear(4096, 4096);
fc3 = torch::nn::Linear(4096, 1000);
}
// Implement the Net's algorithm.
torch::Tensor forward(torch::Tensor x) {
x = conv1->forward(x);
x = torch::relu(x);
//LRN
x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
x = conv2->forward(x);
//LRN
x = torch::relu(x);
x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
x = conv3->forward(x);
x = torch::relu(x);
x = conv4->forward(x);
x = torch::relu(x);
x = conv5->forward(x);
x = torch::relu(x);
x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
x = x.view({ x.size(0),-1 });
x = fc1->forward(x);
x = torch::relu(x);
x = torch::dropout(x,0.5,is_training());
x = fc2->forward(x);
x = torch::relu(x);
x = torch::dropout(x, 0.5, is_training());
x = fc3->forward(x);
x = torch::log_softmax(x,1);
return x;
}
// Use one of many "standard library" modules.
torch::nn::Conv2d conv1{ nullptr };
torch::nn::Conv2d conv2{ nullptr };
torch::nn::Conv2d conv3{ nullptr };
torch::nn::Conv2d conv4{ nullptr };
torch::nn::Conv2d conv5{ nullptr };
torch::nn::Linear fc1{ nullptr };
torch::nn::Linear fc2{ nullptr };
torch::nn::Linear fc3{ nullptr };
};
具体可参考这个
name: "AlexNet"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}
如何使用 libtorch 实现 AlexNet 网络?的更多相关文章
- AlexNet 网络详解及Tensorflow实现源码
版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...
- 第十六节,卷积神经网络之AlexNet网络实现(六)
上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...
- 第十五节,卷积神经网络之AlexNet网络详解(五)
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...
- Caffe训练AlexNet网络,精度不高或者为0的问题结果
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...
- 如何使用 libtorch 实现 LeNet 网络?
如何使用 libtorch 实现 LeNet 网络? LeNet 网络论文地址: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
- AlexNet网络
AlexNet 中包含了比较新的技术点,首次在CNN中成功应用了 ReLu .Dropout和LRN等Trick. 1.成功使用了Relu作为CNN的激活函数,并验证其效果在较深的网络中超过了Sigm ...
- AlexNet网络的Pytorch实现
1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...
- 深入理解AlexNet网络
原文地址:https://blog.csdn.net/luoluonuoyasuolong/article/details/81750190 AlexNet论文:<ImageNet Classi ...
- pytorch实现AlexNet网络
直接上图吧 写网络就像搭积木
随机推荐
- xadmin 问题总结
pip install django-import-export
- js 開始时间,当前时间,结束时间的比較
//開始时间不能小于当前时间 function startTimeIsBigThanTotay(startTime){ var startdate = new Date((startTime).rep ...
- oozie调度hive脚本demo
1. 环境配置 2. 脚本配置 3. 执行job 4. 查看结果 待发布 ..
- NAT and Traversal NAT(TURN/STUN/ICE)
http://www.cnblogs.com/whyandinside/archive/2010/12/08/1900492.html -------------------------------- ...
- linux使用ip能ping通,但使用域名却不能访问的解决方法
使用命令:yum -y update进行更新测试,一般测试结果为couldn't resolve hostmirrors.aliyun.com 解决方式参考博客couldn't resolve hos ...
- 常用的easyui使用方法
-------datagrid 1.获取某行的行号(row)tdg.datagrid('getRowIndex',rows)2.通过行号移除该行tdg.datagrid('deleteRow',ind ...
- C++ 函数的扩展②
//函数扩展--默认参数和占位参数 (了解) #include<iostream> using namespace std; /* 可以将占位参数与默认参数结合起来使用 意义 为以后程序扩 ...
- imx6 MfgTool分析
解析freescale的MfgTool中的脚本,了解imx6, android系统的分区情况. 配置文件 1. cfg.ini [profiles] chip = MX6DL Linux Update ...
- web 开发之nginx--- 阿里云部署nginx
http://blog.csdn.net/zhangjingyangguang/article/details/7441268 http://www.cnblogs.com/languoliang/a ...
- superresolution_v_2.0 Application超分辨率程序文档
SUPERRESOLUTION GRAPHICAL USER INTERFACE DOCUMENTATION Contents 1.- How to use this application. 2.- ...