【论文信息】

《Feedforward semantic segmentation with zoom-out features》

CVPR 2015

superpixel-level,fully supervised,CNN

【方法简单介绍】

首先对输入图像以superpixel为单位提取CNN特征(使用VGG16),然后把这些特征作为CNN classifier(使用imageNet)的输入,imageNet输出是每一个superpixel的class。

【细节记录】

feature

特征提取过程是,对每一个卷积层的输出,用双线性插值的方法做upsampling使之与原图尺寸一致。然后对superpixel s的区域做pooling,这样就得到一个特征向量,这个向量的维度就是当前卷积层的卷积核个数。

例如以下图:

是对每一个superpixel下表中是VGG每一层提取特征的情况:

把每一层的输出向量连接起来,就得到终于的CNN特征。是12416维的。

作者通过实验证明,把每一个卷积层的输出都连接起来形成的特征是最优的:

version=auto&filename=QQ%E6%88%AA%E5%9B%BE20150801222314.png" width="417" height="261" style="margin:0.2em 0px; padding:0px; border:1px solid rgb(217,217,217); vertical-align:middle; max-width:100%; width:auto; height:auto">

zoom-out 

原因在于,CNN的每一个卷积层,设卷积核大小不变,由于有下採样。图像在逐步变小。所以实际上卷积核所能感知的范围是逐步增大的,也就是文中所说的zoom out

version=auto&filename=QQ%E6%88%AA%E5%9B%BE20150801222950.png" width="519" height="454" style="margin:0.2em 0px; padding:0px; border:1px solid rgb(217,217,217); vertical-align:middle; max-width:100%; width:auto; height:auto">

在superpixel level。红色框区域和蓝色框区域,也就是CNN的浅层。输出的特征是local feature,主要包括这个小区域的颜色信息和密度信息,它和相邻的superpixel的特征会有较大差异。

把superpixel向外zoom out。在proximal level,能够得到橄榄色的区域。在这个level提取的特征主要捕捉superpixel周围其它superpixel的信息。已经不是local的信息了,应该是neiboring的信息。对于离得近的superpixel(如A和B的橄榄绿框),它们在这个level的receptive fileds会有较多的overlap。它们之间存在smoothness。在这一层面的特征表示会有些相似。而假设离得远(A和C),overlap小。那么它们的特征表示会有较大差异。

version=auto&filename=QQ%E6%88%AA%E5%9B%BE20150801223517.png" width="469" height="317" style="margin:0.2em 0px; padding:0px; border:1px solid rgb(217,217,217); vertical-align:middle; max-width:100%; width:auto; height:auto">

继续向外zoom out,在distant level。紫色的蓝色的区域,经常带来较大的overlap,可以在superpixel之间建立联系,而且,此时的感知区域已经可以包括一些object,所以这个level提取的特征会包括object的一些形状信息、空间位置信息、复杂的颜色和梯度信息。一些方法用CRF来挖掘这类信息。这样做经常带来复杂的难以求解的模型。

再zoom out,在scene level,就是对整幅图片感知,得到的是global的信息。这level的特征主要包括的信息是”what kind of an image we are looking at“,能够基本限定class的范围。

【实验设计】

1,选择combine哪些层输出的feature。最后结果最好的是全部层的输出连起来得到的feature

2,和现有的方法在VOC的结果比較mean IoU。是最优(Hypercolumns, FCN-8s, SDS, DivMbest+rerank, Codemaps, O2P, Regions&parts, D-sampling, Harmony potentials.)

3,和现有方法在SBD的结果比較pixel accuracy, class accuracy是最优(Multiscale convnet, recurrent CNN, Pylon, Recursive NN, Multilevel)

【总结】

长处

1。它把CNN每一层的特征都拿出来使用,兼顾了local信息和global信息。

2,直接使用image classification的现有成果,不用自己训练网络。方便高效,易于推广。

3,实验结果FCN的方法结果还好。

缺点

从作者贴出的example来看,切割的边缘还是有些粗糙。原因是:本文方法是直接基于superpixel做特征提取和分类的,提取的superpixel是不够准确的。一个superpixel中可能包括了多个class。要优化这个边缘,应该还是要挖掘出pixel level的细节信息。

version=auto&filename=QQ%E6%88%AA%E5%9B%BE20150801225749.png" width="1148" height="508" style="margin:0.2em 0px; padding:0px; border:1px solid rgb(217,217,217); vertical-align:middle; max-width:100%; width:auto; height:auto">

论文笔记《Feedforward semantic segmentation with zoom-out features》的更多相关文章

  1. 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记

    论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...

  2. [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)

    https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...

  3. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  4. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  5. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  6. 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

    ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...

  7. 论文笔记:DARTS: Differentiable Architecture Search

    DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...

  8. 论文笔记:Progressive Neural Architecture Search

    Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...

  9. 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...

  10. 论文笔记系列-DARTS: Differentiable Architecture Search

    Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...

随机推荐

  1. Ocelot网关统一查看多个微服务asp.net core项目的swagger API接口

    0.前言 整体架构目录:ASP.NET Core分布式项目实战-目录 一.准备 前提需要下载安装consul,项目需要懂添加swagger 统一在网关中配置多个微服务的swagger,需要用到服务注册 ...

  2. Arduino可穿戴教程之第一个程序——连接硬件选择板子(二)

    Arduino可穿戴教程之第一个程序——连接硬件选择板子(二) 2.4.2  连接硬件 在选择好示例程序后就可以将LilyPad通过LilyPad编程器连接到电脑了. 2.4.3  选择板子 如果你了 ...

  3. 应用程序首选项(application preference)及数据存储

    应用程序首选项(application preference)用来存储用户设置,考虑以下案例: a. 假设有一款MP3播放器程序,当用户调节了音量,当下次运行该程序时,可能希望保持上一次调节的音量值. ...

  4. vmware12安装centos7系统详解

    1.首先需要准备的工具有vmware12和contos7的系统. vmvare12下载地址: http://pan.baidu.com/s/1i5vH50D contos7我自己使用的为1511版本. ...

  5. Loj10172 涂抹果酱

    题目描述 Tyvj 两周年庆典要到了,Sam 想为 Tyvj 做一个大蛋糕.蛋糕俯视图是一个 N×M 的矩形,它被划分成 N×M 个边长为 1×1 的小正方形区域(可以把蛋糕当成 NNN 行 MMM列 ...

  6. 在WPF中快速实现键盘钩子

    大部分的时候,当我们需要键盘事件的时候,可以通过在主窗口注册KeyBinding来实现,不过,有的时候我们需要的是全局键盘事件,想在任何一个地方都能使用,最开始的时候我是通过键盘钩子来实现的, 不过键 ...

  7. [Projet] Module NFC

    http://www.f4grx.net/projet-module-nfc/ The NFC is a contactless communication technology, which is ...

  8. WM-N-BM-09 WM-N-BM-14

    USI Delivers WICED Module to Gain Great Success Customers Broadcom’s Wireless Internet Connectivity ...

  9. BusyBox 简化嵌入式 Linux 系统

    BusyBox 是很多标准 Linux® 工具的一个单个可执行实现.BusyBox 包含了一些简单的工具,例如 cat 和 echo,还包含了一些更大.更复杂的工具,例如 grep.find.moun ...

  10. dao层知识点总结

    1.dao层要有connection 2.dao层进行分页,mysql limit关键字 3.dao层进行结果集转换为java bean 4.dao层queryforlist