A1261. happiness(吴确)[二元组暴力最小割建模]
接下来是六个矩阵
第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。
第二个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。
第三个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。
第四个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。
第五个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。
第六个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。
1 1
100 110
1
1000
对于30%以内的数据,n,m<=8
对于100%以内的数据,n,m<=100 数据保证答案在2^30以内
对于100%的数据,时间限制为0.5s。


源代码
- #include<cstdio>
- #include<cstring>
- #include<iostream>
- #define EF if(ch==EOF) return x;
- #define rep for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)
- #define rep1 for(int i=1;i<n;i++)for(int j=1;j<=m;j++)
- #define rep2 for(int i=1;i<=n;i++)for(int j=1;j<m;j++)
- using namespace std;
- const int Z=105;
- const int N=Z*Z;
- const int M=N*30;
- struct edge{int v,next,cap;}e[M<<1];int tot=1,head[N];
- int n,m,cnt,res,ans,S,T,dis[N],q[N+M];
- int a[Z][Z],b[Z][Z],id[Z][Z];
- inline int read(){
- int x=0,f=1;char ch=getchar();
- while(ch<'0'||ch>'9'){if(ch=='-')f=-1;EF;ch=getchar();}
- while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
- return x*f;
- }
- void add(int x,int y,int z){
- e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
- e[++tot].v=x;e[tot].cap=0;e[tot].next=head[y];head[y]=tot;
- }
- void Add(int x,int y,int z){
- e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
- e[++tot].v=x;e[tot].cap=z;e[tot].next=head[y];head[y]=tot;
- }
- bool bfs(){
- memset(dis,-1,sizeof dis);
- int h=0,t=1;q[t]=S;dis[S]=0;
- while(h!=t){
- int x=q[++h];
- for(int i=head[x];i;i=e[i].next){
- if(e[i].cap&&dis[e[i].v]==-1){
- dis[e[i].v]=dis[x]+1;
- if(e[i].v==T) return 1;
- q[++t]=e[i].v;
- }
- }
- }
- return 0;
- }
- int dfs(int x,int f){
- if(x==T) return f;
- int used=0,t;
- for(int i=head[x];i;i=e[i].next){
- if(e[i].cap&&dis[e[i].v]==dis[x]+1){
- t=dfs(e[i].v,min(e[i].cap,f));
- e[i].cap-=t;e[i^1].cap+=t;
- used+=t;f-=t;
- if(!f) return used;
- }
- }
- if(!used) dis[x]=-1;
- return used;
- }
- void dinic(){
- res=0;
- while(bfs()) res+=dfs(S,2e9);
- }
- int main(){
- n=read();m=read();
- rep a[i][j]=read();
- rep b[i][j]=read();
- rep id[i][j]=++cnt;
- S=0;T=cnt+1;
- #define u id[i][j]
- #define v id[i+1][j]
- rep{
- add(S,u,b[i][j]<<1);
- add(u,T,a[i][j]<<1);
- ans+=a[i][j]+b[i][j];
- }
- rep1 a[i][j]=read();
- rep1 b[i][j]=read();
- rep1{
- add(S,u,b[i][j]);add(S,v,b[i][j]);
- add(u,T,a[i][j]);add(v,T,a[i][j]);
- Add(u,v,a[i][j]+b[i][j]);
- ans+=a[i][j]+b[i][j];
- }
- #undef v
- #define v id[i][j+1]
- rep2 a[i][j]=read();
- rep2 b[i][j]=read();
- rep2{
- add(S,u,b[i][j]);add(S,v,b[i][j]);
- add(u,T,a[i][j]);add(v,T,a[i][j]);
- Add(u,v,a[i][j]+b[i][j]);
- ans+=a[i][j]+b[i][j];
- }
- dinic();
- res>>=1;
- printf("%d",ans-res);
- return 0;
- }
A1261. happiness(吴确)[二元组暴力最小割建模]的更多相关文章
- 【COGS 1873】 [国家集训队2011]happiness(吴确) 最小割
这是一种最小割模型,就是对称三角,中间双向边,我们必须满足其最小割就是满足题目条件的互斥关系的最小舍弃,在这道题里面我们S表示文T表示理,中间一排点是每个人,每个人向两边连其选文或者选理的价值,中间每 ...
- POJ 3469 Dual Core CPU (最小割建模)
题意 现在有n个任务,两个机器A和B,每个任务要么在A上完成,要么在B上完成,而且知道每个任务在A和B机器上完成所需要的费用.然后再给m行,每行 a,b,w三个数字.表示如果a任务和b任务不在同一个机 ...
- POJ 3084 Panic Room (最小割建模)
[题意]理解了半天--大意就是,有一些房间,初始时某些房间之间有一些门,并且这些门是打开的,也就是可以来回走动的,但是这些门是确切属于某个房间的,也就是说如果要锁门,则只有在那个房间里才能锁. 现在一 ...
- 【GCJ2008E】日程表 最小割
Google Code Jam 2008 E 日程表 [题目描述] 热情的选手Sphinny正在看新一年的日程表,并发现已经安排了很多编 程竞赛.她将这一年的每一天都用以下三种方式之一在日程表上打标记 ...
- [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
- CodeForces1082G Petya and Graph 最小割
网络流裸题 \(s\)向点连边\((s, i, a[i])\) 给每个边建一个点 边\((u, v, w)\)抽象成\((u, E, inf)\)和\((v, E, inf)\)以及边\((E, t, ...
- bzoj 1412 最小割 网络流
比较明显的最小割建模, 因为我们需要把狼和羊分开. 那么我们连接source和每个羊,流量为inf,代表这条边不能成为最小割中的点,同理连接每个狼和汇,流量为inf,正确性同上,那么对于每个相邻的羊和 ...
- SP839 Optimal marks(最小割)
SP839 Optimal marks(最小割) 给你一个无向图G(V,E). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记.对于边(u,v),我们定义Cost(u,v)= ...
- 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割
题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...
随机推荐
- Mysql主从(主从不同步解决办法,常见问题及解决办法,在线对mysql做主从复制)
一.主从不同步解决办法 先上Master库: mysql>show processlist; 查看下进程是否Sleep太多.发现很正常. show master status; 也正常. mys ...
- Laravel自定义分页样式
<?php namespace App\Http\Controllers; use DB; use App\Http\Controllers\Controller; class UserCont ...
- apache设置头
Apache 及开启压缩及Header信息隐藏:http://centilinux.blog.51cto.com/1454781/792820
- Event-Souring模式
Event-Sourcing模式使用仅附加存储来记录或描写叙述域中数据所採取的动作,从而记录完整的一系列系列事件,而不是仅存储实体的当前状态.由于存储包括全部的事件,能够用来具体化域对象. Event ...
- Catalog的种类
框架中的Catalog 在MEF框架中,包含了4种Catalog,所有的Catalog的是从System.ComponentModel.Composition.Primitives名称空间下的Comp ...
- Action的mapping.findFoward(forwardName)必须要在struts-config.xml中的对应的action节点配置一个forward节点
比如说你有个SampleAction,在execute(ActionMapping mapping, ...)中写了句 return mapping.findForward("some_pa ...
- sqlmap里如何添加字典
在sqlmap的目录下有那么一个目录.即"TXT"目录. 该目录下是放字典的. 我在日一个站的时候没有破解出表明.然后不小心下载到了数据库. sqlmap无法猜出表是啥.ps:ac ...
- Failed to resolve: com.android.support:appcompat-v7:26.0.0wenti
在安装Android Studio 3.0的时候出现了这个问题.查阅了许多资料都没有找到原因.到最后才发现,Android Studio默认https是不走代理的,只要勾选上https的代理就顺利的安 ...
- Java泛型小结
本来想着写一篇总结Java泛型的文章,但是却发现了一篇不错的博文,引用自: http://www.cnblogs.com/lwbqqyumidi/p/3837629.html#undefined 现摘 ...
- dedecms安全篇:织梦文件夹目录权限设置
织梦各个目录安全详解 做织梦(dedecms)网站安全必看1.a 因为是静态目录,并且在要生成HTML的,所以拒绝脚本执行 允许写入2.data 因为是缓存等,所以充许写入,但是因为这里面 ...