[洛谷P4717]【模板】快速沃尔什变换
题目大意:给定多项式$A$和$B$,求$C$满足:
$$
C_n=\sum\limits_{x\oplus y=n}A_xB_y
$$
其中$\oplus$为位运算($or,and,xor$)
题解:$FWT$,可以见这篇博客
卡点:无
C++ Code:
#include <algorithm>
#include <cstdio>
#define maxn 262144
const int mod = 998244353; namespace Math {
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
} inline void reduce(int &x) { x += x >> 31 & mod; }
inline void clear(register int *l, const int *r) {
if (l >= r) return ;
while (l != r) *l++ = 0;
} int __n, n, lim;
int A[maxn], B[maxn], C[maxn], D[maxn]; inline void FWT_OR(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j + mid] += A[i + j] - mod);
}
inline void IFWT_OR(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j + mid] -= A[i + j]);
} inline void FWT_AND(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j] += A[i + j + mid] - mod);
}
inline void IFWT_AND(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j] -= A[i + j + mid]);
} inline void FWT_XOR(int *A, const int op = 1) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) {
const int X = A[i + j], Y = A[i + j + mid];
reduce(A[i + j] += Y - mod), reduce(A[i + j + mid] = X - Y);
}
if (!op) {
const int ilim = Math::inv(lim);
for (register int *i = A; i != A + lim; ++i) *i = static_cast<long long> (*i) * ilim % mod;
}
} int main() {
scanf("%d", &__n); n = Math::pw(2, __n);
for (int i = 0; i < n; ++i) scanf("%d", A + i);
for (int i = 0; i < n; ++i) scanf("%d", B + i);
lim = n; std::copy(A, A + n, C); clear(C + n, C + lim);
std::copy(B, B + n, D); clear(D + n, D + lim);
FWT_OR(C), FWT_OR(D);
for (int i = 0; i < lim; ++i) C[i] = static_cast<long long> (C[i]) * D[i] % mod;
IFWT_OR(C);
for (int i = 0; i < n; ++i) printf("%d ", C[i]); puts(""); std::copy(A, A + n, C); clear(C + n, C + lim);
std::copy(B, B + n, D); clear(D + n, D + lim);
FWT_AND(C), FWT_AND(D);
for (int i = 0; i < lim; ++i) C[i] = static_cast<long long> (C[i]) * D[i] % mod;
IFWT_AND(C);
for (int i = 0; i < n; ++i) printf("%d ", C[i]); puts(""); std::copy(A, A + n, C); clear(C + n, C + lim);
std::copy(B, B + n, D); clear(D + n, D + lim);
FWT_XOR(C), FWT_XOR(D);
for (int i = 0; i < lim; ++i) C[i] = static_cast<long long> (C[i]) * D[i] % mod;
FWT_XOR(C, 0);
for (int i = 0; i < n; ++i) printf("%d ", C[i]); puts("");
return 0;
}
[洛谷P4717]【模板】快速沃尔什变换的更多相关文章
- 洛谷.4717.[模板]快速沃尔什变换(FWT)
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)
洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
随机推荐
- Android ObjectOutputStream Serializable引发的血案
遇到一个问题 安装后第二次进app,闪退 重现步骤 [前置条件] 打包分支:dev_7.13 手机:vivo NEX 8.1.0 [步骤] 安装三星app----同意用户协议进入书城---连续点击ba ...
- VINS(三)IMU预积分
IMU的数据频率一般远高于视觉,在视觉两帧k,k+1之间通常会有>10组IMU数据.IMU的数据通过积分,可以获取当前位姿(p位置,q四元数表达的姿态).瞬时速度等参数. 在VIO中,如果参考世 ...
- golang 仿python pack/unpack
写得不完善也不完美 尤其是高低位转换那(go和c 二进制高地位相反 需要转换,还有go int转[]byte长度是4位),希望牛人看后指导一下 项目需要通过socket调取 客户端是go ,服务器端是 ...
- Adobe Photoshop CC2018最新教程+某宝店铺装修教程
PS免费教程,ps淘宝店铺装修教程.该资源为本人从某商网站重金买来,现免费分享给大家,下载地址:百度网盘,https://pan.baidu.com/s/127PjFbGwVVUVce1litHFsw
- HTML/JSP中一些单书名号标签的用途<%-- --%><!-- --><%@ %><%! %><% %><%= %>
注释 <%-- --%>是(JSP)隐式注释,不会在页面显示的注释 <!-- -->是(Html)显示注释,会在JSP页面显示 关于注释还有单行隐式注释//和多行隐式注释/* ...
- 【Linux 运维】linux系统查看版本信息
查看linux系统版本信息: [root@kvm-host~]# cat /proc/version (Linux查看当前操作系统版本信息)Linux version 3.10.0-514 ...
- 网络安全部门的漏洞扫描让你头痛不已么——PHP环境选它就可以了
最近网络安全要求是越来越严,原来PHP编写的程序在XAMPP或者其他环境下总会被某款软件扫出漏洞,进而上级部门就停止了我们服务器的外网出口,然而自从发现了一款安全环境神器UPUPW后,这样的问题就再也 ...
- cenos环境变量配置
Beego环境搭建和bee工具安装使用,以Windows环境为例. 首先,下载并安装好GO并配置好GOROOT和GOPATH环境变量(如果您是用msi包安装的go,那么这些环境变量已经设置好了).并在 ...
- IntelliJ IDEA 2017.3/2018.1/.2 激活
传统的License Server方式已经无法注册IntelliJ IDEA2017.3的版本了. http://idea.lanyus.com,这个网站有破解补丁和注册码两种方式,另外http:// ...
- Daily Scrum 9
今天我们的开会内容有一下部分: Part 1:讨论当前遇到的困难 Part 2:明天的任务分工 ◆Part 1 当前的困难 由于之前我们得到的学长的文件并不完整,导致我们无法打开,在和老师进行积极沟通 ...