http://www.lydsy.com/JudgeOnline/problem.php?id=2693

Description

 

Input

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

1
4 5

Sample Output

122

——————————————————————————————————————————

图片和题解参考均来自于https://www.cnblogs.com/GXZlegend/p/7000042.html以其这里面的链接。

推导过程如图:

这里说一下比较不好理解的步骤。

将每一行边号从1开始。

2:只是变成了枚举gcd的取值,然后判断是否应该取即可。

3:i变成了i/p之后自然需要乘p*p,一约分就成了3式子。

以及最后一个fn当中的所有k应当为n。

然后引用上面的博客来求fn:

设f1(n)=n2mu(n),f2(n)=n,则显然f2是积性函数,f1为两个积性函数的乘积,也是积性函数。

那么f为f1和f2的狄利克雷卷积,也是积性函数。

所以可以尝试快筛f(n)。

当n为质数时,显然f(n)=n-n^2。

当n不为质数时,即n=i*p,p|i,p是质数,那么观察f(n)化简之后的式子,n新增加出来的约数一定是包含p^2的,它的mu值一定是0,所以f(n)的改变只是从i*...变为了n*...,所以此时f(n)=f(i)*p。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int p=1e8+;
inline int read(){
int X=;char ch=;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return X;
}
ll f[N],su[N];
bool he[N];
inline ll s(ll x){
return x*(x+)/%p;
}
void Euler(int n){
int tot=;
f[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
f[i]=(ll)((i-(ll)i*i)%p+p)%p;
}
for(int j=;j<=tot;j++){
if(i*su[j]>n)break;
he[i*su[j]]=;
if(i%su[j]==){
f[i*su[j]]=f[i]*su[j]%p;
break;
}
else f[i*su[j]]=f[i]*f[su[j]]%p;
}
}
for(int i=;i<=n;i++){
f[i]+=f[i-];
if(f[i]>=p)f[i]-=p;
}
return;
}
int main(){
Euler();
int t=read();
while(t--){
int n=read(),m=read(),ans=;
if(n>m)swap(n,m);
for(int i=,j;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(ll)(f[j]-f[i-])*s(n/i)%p*s(m/i)%p;
if(ans<)ans+=p;
if(ans>=p)ans-=p;
}
printf("%d\n",ans);
}
return ;
}

BZOJ2693:JZPTAP——题解的更多相关文章

  1. 题解-bzoj2154Crash的数字表格 & bzoj2693 jzptab

    Problem bzoj2818-单组询问-无权限 bzoj2693-多组询问-需权限 洛谷1829-单组询问-无权限 \(T\)组询问(如果有),给定 \(n,m\),求 \[\sum_{i=1}^ ...

  2. bzoj2693 jzptab 莫比乌斯反演|题解

    Description   Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 ...

  3. 【BZOJ2693】jzptab(莫比乌斯反演)

    [BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...

  4. BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab

    [传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...

  5. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  6. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  7. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  8. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  9. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

随机推荐

  1. path.resolve()和path.join()的区别

    path.join()  组装路径.该方法的主要用途在于,会正确使用当前系统的路径分隔符,Unix系统是/,Windows系统是\.路径字符中可以使用..或../进行相对路径的计算,其它路径表示符会被 ...

  2. QT 标题栏隐藏可拖拽

    这个也是我网上找到了 为了方便,记录一下 void mousePressEvent(QMouseEvent *e); void mouseMoveEvent(QMouseEvent *e); void ...

  3. APP性能测试工具-GT(随身调)

    GT(随身调)是APP的随身调测平台,它是直接运行在手机上的“集成调测环境”(IDTE, Integrated Debug Environment).利用GT,仅凭一部手机,无需连接电脑,您即可对AP ...

  4. python操作字符串内容并重新输出

    今天在做一个函数的作业,题目如下: 编写一个函数实现大写转小写,小写变大写,并且转换为镜像字符串,并且将字符串变为镜像字符串. 例如:’A’变为’Z’,’b’变为’y 示范字符串: ”sdSdsfdA ...

  5. Linux命令应用大词典-第41章 MySQL数据库

    41.1 mysqld_safe:MySQL服务器启动脚本 41.2 mysql_install_db:初始化MySQL数据目录 41.3 mysqlshow:显示MySQL数据库结构 41.4 my ...

  6. Eclipse 常用快捷键 个性设置(Mac)

    推荐编程使用Mac 要是非要一个原因 那就是Apple工程师用Mac Google工程师也用Mac 1. 常用快捷键 Mac自带 Command + ←  跳到当前文本行头 Command + →  ...

  7. (C#)设计模式之装饰模式

    1.装饰模式 动态的给一个对象添加一些额外的职责,就添加功能来说,装饰模式比生成子类更加灵活.*装饰模式是为已有功能动态添加更多功能的一种方式.*装饰模式将原有类中的核心职责与装饰功能分离.简化了原有 ...

  8. window上小而美的软件(推荐度按排名)

    window上小而美的软件,推荐度按排名 Notepad++ 更好用更强大的笔记本 QTranslate 本地翻译神器 7-zip 解压缩软件 Wox 程序/文件/快捷 神器 1! Everthing ...

  9. hdu刷题1

    1002  大数加法 #include<iostream> #include<cstring> using namespace std; int main() { ],b[]; ...

  10. 【转载】2015Android 面试题 01

    1.如何避免ANR? 答:ANR:Application Not Responding,五秒在Android中,活动管理器和窗口管理器这两个系统服务负责监视应用程序的响应. 当出现下列情况时,Andr ...