【dlbook】数学基础
【代数】
Moore-Penrose 伪逆
【概率信息论】
自信息,香农熵,衡量两个分布的差异:kl散度 \ 交叉熵
【数值】
溢出: softmax计算的时候要关注上溢和下溢,如果所有X都相等且为很小的负数的话,有分母为零的风险。
病态条件: 矩阵求逆对输入的误差可能很敏感,这样由于输入的不精确,会导致结果的不精确。
用条件数来衡量。条件数定义为
Jacobian和Hessian阵:
Jacobian阵,m维 to n维, nxm矩阵,yi To xj。多维输出的一阶导数
Hessian阵:m维 to 1维, mxm矩阵,二阶导数,对称阵。将其进行特征值分解,可以得到在哪个方向下降的比较快。正定的时候是局部最小值。
梯度下降法无法包含曲率信息,如果Hessian矩阵条件数过大,一阶方法往往会出问题。
如何计算Hessian阵? / 如何评估是否需要二阶优化?二阶优化在鞍点是有害的。
深度学习背景下凸优化重要性大大减少。
KKT条件,有空自己推一遍。。。
【dlbook】数学基础的更多相关文章
- 3D数学基础:四元数与欧拉角之间的转换
在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点.本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 单位四元数可视化为三维矢量加上第四 ...
- GIS的数学基础
在这里需要说明一点,任何领域的概念.技术都有其特定的适用范围,有其解决的问题,有其发展的历史,所以,抛开应用环境.范围来谈技术就像是没有根系的枝丫,枝丫再粗壮也只是一根木头而已. 那接下来我们来聊聊什 ...
- 机器学习的数学基础(1)--Dirichlet分布
机器学习的数学基础(1)--Dirichlet分布 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是 ...
- 【数学基础篇】---详解极限与微分学与Jensen 不等式
一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...
- 提升机器学习数学基础,这7本书一定要读-附pdf资源
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | KDnuggets 作者 | Ajit Jaokar 转自 | 新智元 编辑 | 大明 [编 ...
- python基础系列教程,数学基础系列教程,数据分析系列教程,神经网络系列教程,深度学习系列视频教程分享交流
大家好,我是一个技术爱好者,目前对大数据人工智能很是痴迷,虽然学历只有高中,目前正在大踏步的向着人工智能狂奔,如果你也想学习,那就来吧 我的学习进度python基础(Numpy,pandas,matp ...
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- 视觉SLAM中的数学基础 第二篇 四元数
视觉SLAM中的数学基础 第二篇 四元数 什么是四元数 相比欧拉角,四元数(Quaternion)则是一种紧凑.易于迭代.又不会出现奇异值的表示方法.它在程序中广为使用,例如ROS和几个著名的SLAM ...
- 视觉SLAM中的数学基础 第三篇 李群与李代数
视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换 ...
随机推荐
- 深入ff and ffbase
用ff 包读取一个csv 文件 >options(fftempdir = [二进制文件存放的位置]) >file_chunks <- read.csv.ffdf(file=”big_ ...
- python的变量类型(Day6)
Python的变量类型 变量可以指定不同的数据类型,这些变量可以存储整数,小数或字符. 变量赋值 Python 中的变量赋值不需要类型声明 等号(=)用来给变量赋值,等号左边为变量值,等号右边是存储在 ...
- springmvc get post put delete
web.xml <!-- 配置 org.springframework.web.filter.HiddenHttpMethodFilter: 可以把 POST 请求转为 DELETE 或 POS ...
- 理解盒模型——外边距、内边距和边框之间的关系,IE 8以下版本的浏览器中的盒模型有什么不同。
一个元素盒模型的层次从内到外分别为:内边距.边框和外边距IE8以下浏览器的盒模型中定义的元素的宽高不包括内边距和边框
- 如何生成.a文件,小心有坑!!
.a文件是一种对实现文件细节进行隐藏的打包文件. 由于是打包文件,所以需要创建工程,将功能代码添加到工程.下面是创建.a文件的具体步骤: Step One:打开Xcode(此处使用的Xcode 8.2 ...
- Linux 上下左右键变成^A,^B,^C,^D解决方法
用gedit打开 /etc/vim/vimrc.tiny,将里面的 set compatible 改成 set nocompatible 对于退格键backspace的问题,只需在刚才那句话下面加上一 ...
- java-json与js-json转化
js中将字符串转换成json的三种方式http://www.jb51.net/article/25987.htm JAVA对象转换为JSON字符串 http://blog.163.com/zzf_fl ...
- 配置zabbix_server通过zabbix_proxy进行监控Host
zabbix_server添加proxy并监控主机 zabbix分布式监控系统安装配置:http://www.cnblogs.com/LuckWJL/p/9037007.html 安装配置zabbix ...
- 使用node-inspector调试NodeJS代码
使用node-inspector调试NodeJS代码 任何一门完备的语言技术栈都少不了健壮的调试工具,对于NodeJS平台同样如此,笔者研究了几种调试NodeJS代码的方式,通过对比,还是觉得node ...
- hdu 5719 Arrange 贪心
Arrange Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Proble ...