题目链接

位运算+\(DP\)=状压\(DP\)?(雾
\(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\)
所以对每个数的子集向子集连一条边,然后答案就是这个\(DAG\)的最长链了,跑一遍拓扑排序就行了。

直接连边的复杂度是\(O(n^2)\),显然只能拿\(60'\)。
题解里的连边方法我没怎么懂然后因为穷又不能看直播讲解
但是我拿到\(70\)分暴力分后(不要问我为什么有70)看了别人的代码,发现一个很巧妙的方法,
无需建图,\(DP\)的思想,我写在洛谷博客里了

【洛谷 P4934】 礼物 (位运算+DP)的更多相关文章

  1. 洛谷 - P1582 - 倒水 - 位运算

    https://www.luogu.org/problemnew/show/P1582 要求用最少的瓶子,那肯定不能有两个一样的瓶子,否则合并更优. 枚举其二进制位,每次加上lowbit,将最后一个1 ...

  2. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  3. 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)

    洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...

  4. 洛谷2344 奶牛抗议(DP+BIT+离散化)

    洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...

  5. 洛谷P1541 乌龟棋(四维DP)

    To 洛谷.1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游 ...

  6. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  7. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  8. 【题解】洛谷P1052 [NOIP2005TG] 过河(DP+离散化)

    题目来源:洛谷P1052 思路 一开始觉得是贪心 但是仔细一想不对 是DP 再仔细一看数据不对 有点大 如果直接存下的话 显然会炸 那么就需要考虑离散化 因为一步最大跳10格 那么我们考虑从1到10都 ...

  9. 洛谷1736(二维dp+预处理)

    洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对 ...

随机推荐

  1. python学习笔记04:安装pip

    如果是从python官网下载的python版本(2.7.9或3.4)的安装包,其中已经内置了pip工具.那么只需要升级pip即可. 检测是否已安装pip: python -m pip --versio ...

  2. 二叉树及其遍历方法---python实现

    github:代码实现 本文算法均使用python3实现 1. 二叉树 1.1 二叉树的定义   二叉树是一种特殊的树,它具有以下特点:   (1)树中每个节点最多只能有两棵树,即每个节点的度最多为2 ...

  3. iOS开发libz.dylib介绍

    libz.dylib这个Xcode系统库文件经常用到.这个其实是个动态链接库. 后缀名为.dylib的文件是一个动态库,这个库是运行时加载而不是编译时加载.这个也说明了obj-C是运行时语言,也就是数 ...

  4. 【Linux】- CentOS 7 安装.NET Core 2.1

    添加dotnet产品Feed 在安装.NET Core之前,您需要注册Microsoft产品Feed. 这只需要做一次. 首先,注册Microsoft签名密钥,然后添加Microsoft产品Feed. ...

  5. [Redis]在Windows下的下载及安装

    1.下载 下载地址: https://github.com/MSOpenTech/redis, 下载并解压到特定的目录. 2.启动Redis服务端 CMD -> redis-server.exe ...

  6. Windows API封装:LoadLibrary/FreeLibrary

    LoadLibrary/LoadLibraryEx用来加载DLL到自己的进程空间,使用完用FreeLibrary释放,一般使用方式如下:    HINSTANCE hInstRich = ::Load ...

  7. 【Python】python 调用c语言函数

    虽然python是万能的,但是对于某些特殊功能,需要c语言才能完成.这样,就需要用python来调用c的代码了具体流程:c编写相关函数 ,编译成库然后在python中加载这些库,指定调用函数.这些函数 ...

  8. P1291 [SHOI2002]百事世界杯之旅

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  9. [NOIP2017]逛公园 最短路图 拓扑序DP

    ---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...

  10. POJ2826:An Easy Problem?!——题解(配特殊情况图)

    http://poj.org/problem?id=2826 题目大意:给两条线,让它接竖直下的雨,问其能装多少横截面积的雨. ———————————————————————————— 水题,看题目即 ...