【bzoj1132】[POI2008]Tro 计算几何
题目描述
平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000
输入
第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10000]
输出
保留一位小数,误差不超过0.1
样例输入
5
0 0
1 2
0 2
1 0
1 1
样例输出
7.0
题解
计算几何
考虑到所求的所有三角形的面积之和为$\sum\limits_{i<j<k}|(y_j-y_i)*(x_k-x_i)-(y_k-y_i)*(x_j-x_i)|$,这样直接计算的时间复杂度是$O(n^3)$的。
如果我们先枚举$i$,并计算出以$P_i$为原点的其它点的相对坐标,那么要求的就是$\sum\limits_{i<j<k}|y_j*x_k-y_k*x_j|$,注意这里有绝对值符号,为了去掉绝对值,需要满足在枚举$i$时,对于任意的$i<j<k$均有$i\to j$在$i\to k$的逆时针方向。所以我们把所有点按照$x$排序,那么$j$和$k$就都在$i$右侧,只需要再将$i$右侧的点按照与$i$连线的斜率排序即可。
去掉绝对值后即求$\sum\limits_{j=i+1}^n(y_j*\sum\limits_{k=j+1}^nx_k-\sum\limits_{k=j+1}^ny_k*x_j)$,维护两个坐标的后缀和,扫一遍即可出解。
时间复杂度$O(n^2\log n)$,瓶颈在于排序。
本题卡精(卡atan2),因此必须按照横坐标、斜率排序以避免精度问题。另外需要开long long。
#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 3010
using namespace std;
typedef long long ll;
struct data
{
ll x , y;
data(ll a = 0 , ll b = 0) {x = a , y = b;}
data operator-(const data &a)const {return data(x - a.x , y - a.y);}
bool operator<(const data &a)const {return y * a.x < x * a.y;}
}a[N] , t[N];
ll sx[N] , sy[N];
bool cmp(data a , data b)
{
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
int main()
{
int n , i , j;
ll ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld%lld" , &a[i].x , &a[i].y);
sort(a + 1 , a + n + 1 , cmp);
for(i = 1 ; i <= n ; i ++ )
{
for(j = i + 1 ; j <= n ; j ++ ) t[j] = a[j] - a[i];
sort(t + i + 1 , t + n + 1);
for(j = n ; j > i ; j -- )
{
sx[j] = sx[j + 1] + t[j].x , sy[j] = sy[j + 1] + t[j].y;
ans += t[j].x * sy[j + 1] - t[j].y * sx[j + 1];
}
}
printf("%lld.%lld\n" , ans / 2 , ans % 2 * 5);
return 0;
}
【bzoj1132】[POI2008]Tro 计算几何的更多相关文章
- bzoj1132[POI2008]Tro 计算几何
1132: [POI2008]Tro Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1722 Solved: 575[Submit][Status] ...
- BZOJ1132: [POI2008]Tro
1132: [POI2008]Tro Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 815 Solved: 211[Submit][Status] ...
- 【计算几何】【极角序】【前缀和】bzoj1132 [POI2008]Tro
把点按纵坐标排序,依次枚举,把它作为原点,然后把之后的点极角排序,把叉积的公式稍微化简一下,处理个后缀和统计答案. #include<cstdio> #include<cmath&g ...
- bzoj 1132: [POI2008]Tro 计算几何
题目大意: 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 题解 我们看到了n的范围,于是我们就知道这一定不是一个线性算法 所以我们尝试枚举三角形的一个点,那么我们现 ...
- BZOJ1132: [POI2008]Tro(叉积 排序)
题意 世上最良心题目描述qwq 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Sol 直接模拟是$n^3$的. 考虑先枚举一个$i$,那么我们要算的就是$\sum_ ...
- 【BZOJ1132】[POI2008]Tro 几何
[BZOJ1132][POI2008]Tro Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3,3000 ...
- BZOJ_1132_[POI2008]Tro_计算几何
BZOJ_1132_[POI2008]Tro_计算几何 Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3 ...
- bzoj 1132 [POI2008]Tro 几何
[POI2008]Tro Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1796 Solved: 604[Submit][Status][Discu ...
- 【BZOJ1132】【POI2008】Tro 计算几何 叉积求面积
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
随机推荐
- NYOJ 745 dp
蚂蚁的难题(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 下雨了,下雨了,蚂蚁搬家了. 已知有n种食材需要搬走,这些食材从1到n依次排成了一个圈.小蚂蚁对每种 ...
- PHP系统编程--02.PHP守护进程化
什么是守护进程? 一个守护进程通常补认为是一个不对终端进行控制的后台任务.它有三个很显著的特征:在后台运行,与启动他的进程脱离,无须控制终端.常用的实现方式是fork() -> setsid() ...
- 删除linux上7天前后缀名.sql的文件
#!/bin/bash#delete the file of 7 days agofind /data/mysqlbackup/ -mtime +7 -name "*.sql" - ...
- java将文件转为UTF8工具类
package hiveTest; import java.io.BufferedReader; import java.io.DataInputStream; import java.io.File ...
- Item 11 谨慎地覆盖Clone
1.进行浅拷贝时,只是复制原始数据类型的值,则可以通过覆盖Clone方法来达到.另外,在进行浅拷贝的时候,还要注意,成员对象中不应该要有引用类型,如果有引用类型,那么,进行了浅拷贝之后,两个对象将会共 ...
- 「6月雅礼集训 2017 Day7」三明治
[题目大意] $1 \leq n,m \leq 400$ N字形表示:上图第1行第1个那种:Z字形表示上图第1行第2个那种. [题解] 很容易得到结论: 考虑如果紫色比绿色先消去,那么黄色一定会比对应 ...
- 【SPOJ】1182 Sorted bit sequence
[算法]数位DP [题解]动态规划 写了预处理函数却忘了调用是一种怎样的体验? #include<cstdio> #include<cstring> #include<a ...
- 深入理解 Java 多线程核心知识:跳槽面试必备
多线程相对于其他 Java 知识点来讲,有一定的学习门槛,并且了解起来比较费劲.在平时工作中如若使用不当会出现数据错乱.执行效率低(还不如单线程去运行)或者死锁程序挂掉等等问题,所以掌握了解多线程至关 ...
- 【洛谷 P4320】 道路相遇 (圆方树,LCA)
题目链接 题意:给一张无向图和\(M\)个询问,问\(u,v\)之间的路径的必经之点的个数. 对图建出圆方树,然后必经之点就是两点路径经过的原点个数,用\((dep[u]+dep[v]-dep[LCA ...
- 你自认为理解了JavaScript?【转】
第一题 if (!("a" in window)) { var a = 1; } alert(a); 第二题 var a = 1, b = function a(x) { x &a ...