前以前帖子介绍,怎样读取文本数据源和多个数据源的合并:http://www.cnblogs.com/liqizhou/archive/2012/05/15/2501835.html

这一个博客介绍一下MapReduce怎样读取关系数据库的数据,选择的关系数据库为MySql,因为它是开源的软件,所以大家用的比较多。以前上学的时候就没有用过开源的软件,直接用盗版,也相当与免费,且比开源好用,例如向oracle,windows7等等。现在工作了,由于公司考虑成本的问题,所以都用成开源的,ubuntu,mysql等,本人现在支持开源,特别像hadoop这样的东西,真的太好了,不但可以使用软件,也可以读到源代码。话不说多了。

hadoop技术推出一首曾遭到关系数据库研究者的挑衅和批评,认为MapReduce不具有关系数据库中的结构化数据存储和处理能力。为此,hadoop社区和研究人员做了多的努力,在hadoop0.19版支持MapReduce访问关系数据库,如:mysql,MySQL、PostgreSQL、Oracle 等几个数据库系统。

1. 从Mysql读出数据

Hadoop访问关系数据库主要通过一下接口实现的:DBInputFormat类,包所在位置:org.apache.hadoop.mapred.lib.db 中。DBInputFormat 在 Hadoop 应用程序中通过数据库供应商提供的 JDBC接口来与数据库进行交互,并且可以使用标准的 SQL 来读取数据库中的记录。学习DBInputFormat首先必须知道二个条件。

  1. 在使用 DBInputFormat 之前,必须将要使用的 JDBC 驱动拷贝到分布式系统各个节点的$HADOOP_HOME/lib/目录下。

  2. MapReduce访问关系数据库时,大量频繁的从MapReduce程序中查询和读取数据,这大大的增加了数据库的访问负载,因此,DBInputFormat接口仅仅适合读取小数据量的数据,而不适合处理数据仓库。要处理数据仓库的方法有:利用数据库的Dump工具将大量待分析的数据输出为文本,并上传的Hdfs中进行处理,处理的方法可参考:http://www.cnblogs.com/liqizhou/archive/2012/05/15/2501835.html

DBInputFormat 类中包含以下三个内置类

  1. protected class DBRecordReader implementsRecordReader<LongWritable, T>:用来从一张数据库表中读取一条条元组记录。
  2. 2.public static class NullDBWritable implements DBWritable,Writable:主要用来实现 DBWritable 接口。DBWritable接口要实现二个函数,第一是write,第二是readFileds,这二个函数都不难理解,一个是写,一个是读出所有字段。原型如下:
    public void write(PreparedStatement statement) throwsSQLException;
    public void readFields(ResultSet resultSet) throws SQLException;
  3. protected static class DBInputSplit implements InputSplit:主要用来描述输入元组集合的范围,包括 start 和 end 两个属性,start 用来表示第一条记录的索引号,end 表示最后一条记录的索引号.

下面对怎样使用 DBInputFormat 读取数据库记录进行详细的介绍,具体步骤如下:

  1. DBConfiguration.configureDB (JobConf job, StringdriverClass, String dbUrl, String userName, String passwd)函数,配置JDBC 驱动,数据源,以及数据库访问的用户名和密码。MySQL 数据库的 JDBC 的驱动为“com.mysql.jdbc.Driver”,数据源为“jdbc:mysql://localhost/testDB”,其中testDB为访问的数据库。useName一般为“root”,passwd是你数据库的密码。

  2. DBInputFormat.setInput(JobConf job, Class<?extends DBWritable> inputClass, String tableName, String conditions,String orderBy, String... fieldNames),这个方法的参数很容易看懂,inputClass实现DBWritable接口。,string tableName表名, conditions表示查询的条件,orderby表示排序的条件,fieldNames是字段,这相当与把sql语句拆分的结果。当然也可以用sql语句进行重载。etInput(JobConf job, Class<?extends DBWritable> inputClass, String inputQuery, StringinputCountQuery)。

  3. 编写MapReduce函数,包括Mapper 类、Reducer 类、输入输出文件格式等,然后调用JobClient.runJob(conf)。

上面讲了理论,下面举个例子:假设 MySQL 数据库中有数据库student,假设数据库中的字段有“id”,“name”,“gender","number"。

第一步要实现DBwrite和write数据接口。代码如下:

        public class StudentRecord implements Writable, DBWritable{
int id;
String name;
String gender;
String number;
@Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
this.id = in.readInt();
this.gender = Text.readString(in);
this.name = in.readString();
this.number = in.readString();
}
@Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeInt(this.id);
Text.writeString(out,this.name);
out.writeInt(this.gender);
out.writeInt(this.number);
} @Override
public void readFields(ResultSet result) throws SQLException {
// TODO Auto-generated method stub
this.id = result.getInt(1);
this.name = result.getString(2);
this.gender = result.getString(3);
this.number = result.getString(4);
} @Override
public void write(PreparedStatement stmt) throws SQLException{
// TODO Auto-generated method stub
stmt.setInt(1, this.id);
stmt.setString(2, this.name);
stmt.setString(3, this.gender);
stmt.setString(4, this.number);
}
@Override
public String toString() {
// TODO Auto-generated method stub
return new String(this.name + " " + this.gender + " " +this.number);
}

第二步,实现Map和Reduce类

    public class DBAccessMapper extends MapReduceBase implements
Mapper<LongWritable, TeacherRecord, LongWritable, Text> {
@Override
public void map(LongWritable key, TeacherRecord value,
OutputCollector<LongWritable, Text> collector, Reporter reporter)
throws IOException {
// TODO Auto-generated method stub
new collector.collect(new LongWritable(value.id), new Text(value
.toString()));
}
}

第三步:主函数的实现,函数

public class DBAccessReader {

    public static void main(String[] args) throws IOException {
JobConf conf = new JobConf(DBAccessReader.class);
conf.setOutputKeyClass(LongWritable.class);
conf.setOutputValueClass(Text.class);
conf.setInputFormat(DBInputFormat.class);
FileOutputFormat.setOutputPath(conf, new Path("dboutput"));
DBConfiguration.configureDB(conf,"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost/school","root","123456");
String [] fields = {"id", "name", "gender", "number"};
DBInputFormat.setInput(conf, StudentRecord.class,"Student",null "id", fields);
conf.setMapperClass(DBAccessMapper.class);
conf.setReducerClass(IdentityReducer.class);
JobClient.runJob(conf);
} }

2.写数据

往往对于数据处理的结果的数据量一般不会太大,可能适合hadoop直接写入数据库中。hadoop提供了相应的数据库直接输出的计算发结果。

  1. DBOutFormat: 提供数据库写入接口。
  2. DBRecordWriter:提供向数据库中写入的数据记录的接口。
  3. DBConfiguration:提供数据库配置和创建链接的接口。

DBOutFormat提供一个静态方法setOutput(job,String table,String ...filedNames);该方法的参数很容易看懂。假设要插入一个Student的数据,其代码为

    public static void main(String[] args) throws IOException {
Configuration conf = new Configuration();
JobConf conf = new JobConf();
conf.setOutputFormat(DBOutputFormat.class);
DBConfiguration.configureDB(conf,"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost/school","root","123456");
DBOutputFormat.setOutput(conf,"Student", 456, "liqizhou", "man", "20004154578");
JobClient.runJob(conf); 

Hadoop,MapReduce操作Mysql的更多相关文章

  1. Hadoop MapReduce 操作 统计词频

    1.准备文件并设置编码格式为UTF-8并上传Linux 2.新建一个Java Project 3.导入jar 4.编写Map()和Reduce() 5.将代码输出成jar 6.在linux中启动hdf ...

  2. 本地通过Eclipse链接Hadoop操作Mysql数据库问题小结

    前一段时间,在上一篇博文中描述了自己抽时间在构建的完全分布式Hadoop环境过程中遇到的一些问题以及构建成功后,通过Eclipse操作HDFS的时候遇到的一些问题,最近又想进一步学习学习Hadoop操 ...

  3. Hadoop 中利用 mapreduce 读写 mysql 数据

    Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP ...

  4. Hbase理论&&hbase shell&&python操作hbase&&python通过mapreduce操作hbase

    一.Hbase搭建: 二.理论知识介绍: 1Hbase介绍: Hbase是分布式.面向列的开源数据库(其实准确的说是面向列族).HDFS为Hbase提供可靠的底层数据存储服务,MapReduce为Hb ...

  5. 通过mapreduce把mysql的数据读取到hdfs

    前面讲过了怎么通过mapreduce把mysql的一张表的数据放到另外一张表中,这次讲的是把mysql的数据读取到hdfs里面去 具体怎么搭建环境我这里就不多说了.参考 通过mapreduce把mys ...

  6. Hadoop MapReduce 一文详解MapReduce及工作机制

    @ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapRe ...

  7. Hadoop MapReduce执行过程详解(带hadoop例子)

    https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...

  8. hadoop MapReduce Yarn运行机制

    原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) ...

  9. Hadoop MapReduce例子-新版API多表连接Join之模仿订单配货

    文章为作者原创,未经许可,禁止转载.    -Sun Yat-sen University 冯兴伟 一.    项目简介: 电子商务的发展以及电商平台的多样化,类似于京东和天猫这种拥有过亿用户的在线购 ...

随机推荐

  1. Null 值对索引排序的影响案例一则

    --原SQL 语句如下:select * from (select tmp_tb.*, ROWNUM row_id from (select wpid, customer_id, customer_n ...

  2. Centos7单网卡带VLAN多IP配置

    1.需要使用到vconfig软件,首先yum安装vconfig: 使用指令yum install vconfig:(若是本机找不到vconfig安装包,可以通过其他centos7安装yum-utils ...

  3. 搭建 Redis 的主从

    主从概念 ⼀个master可以拥有多个slave,⼀个slave⼜可以拥有多个slave,如此下去,形成了强⼤的多级服务器集群架构 master用来写数据,slave用来读数据,经统计:网站的读写比率 ...

  4. C# Oracle批量插入数据进度条制作

    前言 由于项目需求,需要将Excel中的数据进过一定转换导入仅Oracle数据库中.考虑到当Excel数据量较大时,循环Insert语句效率太低,故采用批量插入的方法.在插入操作运行时,会造成系统短暂 ...

  5. JS原生评分组件

    JS原生评分组件 <html> <head> <meta http-equiv="Content-Type" content="text/h ...

  6. 用树莓派做电视盒子,安装Android TV系统

    有位朋友问我,如何在树莓派上安装盒子系统,这期我就教大家如何安装Android系统,自动动手做一个机顶盒. 如何安装系统,我已经在 树莓派安装系统 这篇文章中了做介绍,有需要的请看这篇文章.安装系统需 ...

  7. 第8天 Java基础语法

    第8天 Java基础语法 今日内容介绍 Eclipse开发工具 超市库存管理系统 Eclipse开发工具 Eclipse是功能强大Java集成开发工具.它可以极大地提升我们的开发效率.可以自动编译,检 ...

  8. 《JQuery常用插件教程》系列分享专栏

    <JQuery常用插件教程>已整理成PDF文档,点击可直接下载至本地查阅https://www.webfalse.com/read/201719.html 文章 使用jquery插件实现图 ...

  9. c语言杨氏矩阵算法

    杨氏矩阵 有一个二维数组.数组的每行从左到右是递增的,每列从上到下是递增的.在这样的数组中查找一个数字是否存在.时间复杂度小于O(N);数组:1 2 32 3 43 4 5 1 3 42 4 54 5 ...

  10. c语言中 *p++ 和 (*p)++ 有什么区别?以及C语言运算符的优先级。整理。

    *p++是指下一个地址. (*p)++是指将*p所指的数据的值加一. C编译器认为*和++是同优先级操作符,且都是从右至左结合的,所以*p++中的++只作用在p上,和*(p++)意思一样:在(*p)+ ...