题意:树上每个点都有颜色,称一个颜色占领一棵子树,当且仅当没有别的颜色在这棵子树内的数量比它多。求所有子树的占领颜色之和。题解:最显然的是DFS序+主席树或莫队,这里使用Dsu on tree。

每次暴力DFS之后,只撤销除重儿子之外的点的贡献。由于重儿子的性质,均摊后复杂度为$O(n\log n)$。

 #include<cstdio>
#include<algorithm>
#include<iostream>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=;
int n,u,v,cnt,tot[N],mx,col[N],sz[N],son[N],h[N],to[N],nxt[N];
ll ans[N],sm;
bool skip[N]; void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void get(int x,int fa){
sz[x]=;
For(i,x) if ((k=to[i])!=fa){
get(k,x); sz[x]+=sz[k];
if (sz[k]>sz[son[x]]) son[x]=k;
}
} void dfs(int x,int fa,int op){
tot[col[x]]+=op;
if (op> && tot[col[x]]>=mx){
if (tot[col[x]]>mx) sm=,mx=tot[col[x]];
sm+=col[x];
}
For(i,x) if ((k=to[i])!=fa && !skip[k]) dfs(k,x,op);
} void work(int x,int fa,bool cl){
For(i,x) if ((k=to[i])!=fa && k!=son[x]) work(k,x,);
if (son[x]) work(son[x],x,),skip[son[x]]=;
dfs(x,fa,); ans[x]=sm; skip[son[x]]=;
if (cl) dfs(x,fa,-),mx=sm=;
} int main(){
scanf("%d",&n);
rep(i,,n) scanf("%d",&col[i]);
rep(i,,n) scanf("%d%d",&u,&v),add(u,v),add(v,u);
get(,); work(,,);
rep(i,,n) cout<<ans[i]<<' ';
return ;
}

[CF600E]Dsu on tree的更多相关文章

  1. 【CF600E】Lomsat gelral(dsu on tree)

    [CF600E]Lomsat gelral(dsu on tree) 题面 洛谷 CF题面自己去找找吧. 题解 \(dsu\ on\ tree\)板子题 其实就是做子树询问的一个较快的方法. 对于子树 ...

  2. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  3. dsu on tree(CF600E Lomsat gelral)

    题意 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. dsu on tree 用来解决子树问题 好像不能带修改?? 暴力做这个题,就是每次扫一遍子树统 ...

  4. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

  5. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  6. [dsu on tree]【学习笔记】

    十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下 Codeforces原文链接 dsu on tree 简介 我也不清楚dsu是什么的英文缩写... 就像是树上的启发式合 ...

  7. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  8. dsu on tree入门

    先瞎扯几句 说起来我跟这个算法好像还有很深的渊源呢qwq.当时在学业水平考试的考场上,题目都做完了不会做,于是开始xjb出题.突然我想到这么一个题 看起来好像很可做的样子,然而直到考试完我都只想出来一 ...

  9. BZOJ.3307.雨天的尾巴(dsu on tree/线段树合并)

    BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色, ...

随机推荐

  1. 【POJ】1222 EXTENDED LIGHTS OUT

    [算法]高斯消元 [题解] 高斯消元经典题型:异或方程组 poj 1222 高斯消元详解 异或相当于相加后mod2 异或方程组就是把加减消元全部改为异或. 异或性质:00 11为假,01 10为真.与 ...

  2. LTC 钱包部署

    基础环境 系统: CentOS 7.x nodejs: v4.6.0 zeromq: 4.x 安装nodejs + zeromq 基础依赖 yum install -y gcc make gcc-c+ ...

  3. UIDatePicker---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址: iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址  UIDatePicker //转载请注明出处--本文永久链接:http://www ...

  4. SpringBoot Mybatis 读写分离配置(山东数漫江湖)

    为什么需要读写分离 当项目越来越大和并发越来大的情况下,单个数据库服务器的压力肯定也是越来越大,最终演变成数据库成为性能的瓶颈,而且当数据越来越多时,查询也更加耗费时间,当然数据库数据过大时,可以采用 ...

  5. POJ 30253 Fence Repair (二叉树+优先队列)

    题目链接 Description Farmer John wants to repair a small length of the fence around the pasture. He meas ...

  6. java servlet jsp 导入boostrap css js

    1.在导入boostrap.css的时候注意了 一定要注意路径,你知道把js和css包放在servlet服务器的静态路径下面就是 lib 文件夹路径下,直接使用 lib/js/boostrap.css ...

  7. GDB实战

    程序中除了一目了然的Bug之外都需要一定的调试手段来分析到底错在哪.到目前为止我们的调试手段只有一种:根据程序执行时的出错现象假设错误原因,然后在代码中适当的位置插入 printf ,执行程序并分析打 ...

  8. Development tools[重点]

    Development tools yum groupinfo "Development tools" Loaded plugins: product-id, security, ...

  9. [转载]关于python字典类型最疯狂的表达方式

    一个Python字典表达式谜题 让我们探究一下下面这个晦涩的python字典表达式,以找出在python解释器的中未知的内部到底发生了什么. # 一个python谜题:这是一个秘密 # 这个表达式计算 ...

  10. centos 6 编译安装php-5.4/5.5(lamp模式)

    在安装LAMP架构时,我们常用php-5.3的版本 现进行php-5.4/5.5的编译安装演示: [root@localhost ~]# cd /usr/local/src [root@localho ...