题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3397

题目大意:

0 a b表示a-b区间置为0

1 a b表示a-b区间置为1

2 a b表示a-b区间中的0变成1,1变成0

3 a b表示a-b区间中的1的数目

4 a b表示a-b区间中最长连续1的长度

解题思路:

线段树多种标记。

需要处理的东西比较多:

做题的时候发现一个问题:

我的宏定义Max不可以用于函数,尤其是递归函数,这样会使得同一函数重复调用好几遍,递归函数的话更会超时。

 #include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} typedef long long ll;
const int maxn = + ;
const int MOD = ;//const引用更快,宏定义也更快 struct node
{
int l, r;//左右区间
int ls0, rs0, ms0;//左连续的0,右连续的0,区间最大连续的0
int ls1, rs1, ms1;//左连续的1,右连续的1,区间最大连续的1
int sum0, sum1;//区间0 1数目
int lazy, Xor;//懒惰标记和异或标记
}tree[maxn << ];
int a[maxn];
void pushup(int o)
{
if(tree[o].l == tree[o].r)return;//叶子节点直接返回
//根据子节点的信息,更新父节点信息 //更新0:
int lc = lson, rc = rson;
tree[o].ls0 = tree[lc].ls0;
tree[o].rs0 = tree[rc].rs0;
if(tree[lc].ls0 == tree[lc].r - tree[lc].l + )
tree[o].ls0 += tree[rc].ls0;//左节点左连续的0为区间长度 那么根节点左连续的0需要再加上右节点左连续的0
if(tree[rc].rs0 == tree[rc].r - tree[rc].l + )
tree[o].rs0 += tree[lc].rs0;
tree[o].ms0 = Max(Max(tree[lc].ms0, tree[rc].ms0), tree[lc].rs0 + tree[rc].ls0);//最大连续0 = Max(左节点最大连续0, 右节点最大连续0,中间最大连续0)
tree[o].sum0 = tree[lc].sum0 + tree[rc].sum0;
//更新1
tree[o].ls1 = tree[lc].ls1;
tree[o].rs1 = tree[rc].rs1;
if(tree[lc].ls1 == tree[lc].r - tree[lc].l + )
tree[o].ls1 += tree[rc].ls1;//左节点左连续的0为区间长度 那么根节点左连续的0需要再加上右节点左连续的0
if(tree[rc].rs1 == tree[rc].r - tree[rc].l + )
tree[o].rs1 += tree[lc].rs1;
tree[o].ms1 = Max(Max(tree[lc].ms1, tree[rc].ms1), tree[lc].rs1 + tree[rc].ls1);//最大连续0 = Max(左节点最大连续0, 右节点最大连续0,中间最大连续0)
tree[o].sum1 = tree[lc].sum1 + tree[rc].sum1;
}
void XOR(int o)
{
swap(tree[o].ls0, tree[o].ls1);
swap(tree[o].rs0, tree[o].rs1);
swap(tree[o].ms0, tree[o].ms1);
swap(tree[o].sum0, tree[o].sum1);
}
void pushdown(int o)//标记下传
{
if(tree[o].l == tree[o].r)return;
if(tree[o].lazy != -)//区间覆盖0或者1
{
int lc = lson, rc = rson, len = tree[o].r - tree[o].l + ;
tree[lc].lazy = tree[rc].lazy = tree[o].lazy;
tree[lc].Xor = tree[rc].Xor = ; //左节点长度为(len+1) / 2 右节点长度为len/2
//左
tree[lc].ls0 = tree[lc].rs0 = tree[lc].ms0 = tree[o].lazy ? : (len + ) / ;
tree[lc].ls1 = tree[lc].rs1 = tree[lc].ms1 = tree[o].lazy ? (len + ) / : ;
tree[lc].sum0 = tree[o].lazy ? : (len + ) / ;
tree[lc].sum1 = tree[o].lazy ? (len + ) / : ;
//右
tree[rc].ls0 = tree[rc].rs0 = tree[rc].ms0 = tree[o].lazy ? : (len) / ;
tree[rc].ls1 = tree[rc].rs1 = tree[rc].ms1 = tree[o].lazy ? (len) / : ;
tree[rc].sum0 = tree[o].lazy ? : (len) / ;
tree[rc].sum1 = tree[o].lazy ? (len) / : ; tree[o].lazy = -;//清除标记
}
if(tree[o].Xor)
{
tree[o].Xor = ;
tree[lson].Xor ^= ;
tree[rson].Xor ^= ;
XOR(lson), XOR(rson);
}
}
void build(int o, int l, int r)
{
tree[o].l = l, tree[o].r = r, tree[o].lazy = -, tree[o].Xor = ;
if(l == r)
{
tree[o].ls0 = tree[o].rs0 = tree[o].ms0 = (a[l] == );
tree[o].ls1 = tree[o].rs1 = tree[o].ms1 = (a[l] == );
tree[o].sum1 = (a[l] == );
tree[o].sum0 = (a[l] == );
return;
}
int m = MID(l, r);
build(lson, l, m);
build(rson, m + , r);
pushup(o);
}
int flag;//标记类型
int ql, qr;
void update(int o)
{
pushdown(o);
if(ql <= tree[o].l && qr >= tree[o].r)
{
if(flag == )
{
tree[o].Xor = ;
XOR(o);
}
else
{
int len = tree[o].r - tree[o].l + ;
tree[o].lazy = flag;
tree[o].ls0 = tree[o].rs0 = tree[o].ms0 = flag ? : len;
tree[o].ls1 = tree[o].rs1 = tree[o].ms1 = flag ? len : ;
tree[o].sum0 = flag ? : len;
tree[o].sum1 = flag ? len : ;
}
}
else
{
int m = MID(tree[o].l, tree[o].r);
if(ql <= m)update(lson);
if(qr > m)update(rson);
pushup(o);
}
} int query(int o)
{
pushdown(o);
if(ql <= tree[o].l && qr >= tree[o].r)
{
if(flag == )return tree[o].sum1;
else return tree[o].ms1;
}
else
{
if(qr <= tree[lson].r)return query(lson);
if(ql >= tree[rson].l)return query(rson);
if(flag == )return query(lson) + query(rson);
int ans1 = Min(tree[lson].rs1, tree[lson].r - ql + ) + Min(tree[rson].ls1, qr - tree[rson].l + );
int ans2 = max(query(lson), query(rson));//用宏定义会超时,因为一直在递归
return Max(ans1, ans2);
}
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++)scanf("%d", &a[i]);
build(, , n);
while(m--)
{
scanf("%d%d%d", &flag, &ql, &qr);
ql++, qr++;
if(flag < )update();
else printf("%d\n", query());
}
}
return ;
}

hdu-3397 Sequence operation 线段树多种标记的更多相关文章

  1. hdu 3397 Sequence operation (线段树 区间合并 多重标记)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=3397 题意: 给你一串01串,有5种操作 0. 区间全部变为0 1.区间全部变为1 2.区间异或 3.询问 ...

  2. hdu 3397 Sequence operation 线段树

    题目链接 给出n个数, 每个数是0或1, 给5种操作, 区间变为1, 区间变为0, 区间0,1翻转, 询问区间内1的个数, 询问区间内最长连续1的个数. 需要将数组开成二维的, 然后区间0, 1翻转只 ...

  3. hdu 3397 Sequence operation 线段树 区间更新 区间合并

    题意: 5种操作,所有数字都为0或1 0 a b:将[a,b]置0 1 a b:将[a,b]置1 2 a b:[a,b]中的0和1互换 3 a b:查询[a,b]中的1的数量 4 a b:查询[a,b ...

  4. HDU 3397 Sequence operation(线段树)

    HDU 3397 Sequence operation 题目链接 题意:给定一个01序列,有5种操作 0 a b [a.b]区间置为0 1 a b [a,b]区间置为1 2 a b [a,b]区间0变 ...

  5. hdu 3397 Sequence operation(线段树:区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3397 题意:给你一个长度为n的0,1序列,支持下列五种操作, 操作0(0 a b):将a到b这个区间的 ...

  6. hdu 3397 Sequence operation(很有意思的线段树题)

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. 【线段树】HDU 3397 Sequence operation 区间合并

    操作 Change operations: 0 a b change all characters into '0's in [a , b] 1 a b change all characters i ...

  8. Sequence operation(线段树区间多种操作)

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdu3397 Sequence operation 线段树

    hdu3397 Sequence operation #include <bits/stdc++.h> using namespace std; ; struct node { /// l ...

随机推荐

  1. “System.OutOfMemoryException”类型的异常在 mscorlib.dll 中发生,但未在用户代码中进行处理

    “System.OutOfMemoryException”类型的异常在 mscorlib.dll 中发生,但未在用户代码中进行处理 这个原因肯定不是因为程序内部的逻辑错误,或者别的什么情况. 想想,肯 ...

  2. java中接口的定义

    使用interface来定义一个接口.接口定义同类的定义类似,也是分为接口的声明和接口体,其中接口体由常量定义和方法定义两部分组成.定义接口的基本格式如下: [修饰符] interface 接口名 [ ...

  3. OpenStack IceHouse 部署 - 2 - 网络与软件环境初始化

    OpenStack应用:节点软硬件环境配置    节点硬件与IP分配 实验室网关 10.14.39.1 各个节点 节点名称 硬件(Linux硬盘分区,RAM,CPU) ip地址(接口) 作用与运行的服 ...

  4. Thymeleaf学习记录(3)--语法

    语法: 标准表达式语法 简单表达: 变量表达式: ${...} 选择变量表达式: *{...} 消息表达式: #{...} 链接网址表达式: @{...} 字面 文本文字:'one text','An ...

  5. 解决react不能往setState中传key作为参数的办法(文章最后实现了传递key做参数的办法)

    读者朋友可以直接看最后一个分割线下面的那部分!利用方括号语法来动态的访问对象的属性,实现当参数为属性名的传递; 有时候我们需要每次单独设置众多state中的一个,但是,都是进行相同的操作,这时候如果每 ...

  6. centos配置网络

    [root@localhost ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0DEVICE="eth0"BOOTPROTO=&qu ...

  7. 很赞的一个教程: React.js 小书

    很赞,  React.js 小书        http://huziketang.com/books/react/ 推荐阅读入门, 照着来一遍,能会个七七八八, 更多的还需要多写 import Re ...

  8. WebService程序数据集之WSDL取数

    在通用的webservice集合中,在集合中使用wsdl取数的方式获取数据,并将数据转换为程序数据集,那么怎样通过wsdl取数并转换为程序数据集呢? 首先将wsdl获取到的数据数据转换为二维数组,然后 ...

  9. Box(视图组件)如何在多个页面不同视觉规范下的复用

    本文来自 网易云社区 . 问题描述 Android App中的页面元素,都是由一个个Box(可以理解成一个个自定义View组件和Widget同级)组成,这些Box可以在不同的页面.不同的模块达到复用的 ...

  10. 前端单元测试环境搭建 Karma Jasmine

    Karma 官网On the AngularJS team, we rely on testing and we always seek better tools to make our life e ...