解题:HNOI 2008 玩具装箱
搞了一晚上斜率优化,大概懂了一点,写写
原来常用的优化dp方法:做前缀和,预处理,数据结构维护
现在有转移方程长这样的一类dp:$dp[i]=min(dp[i],k[i]*x[j]+y[j]+c[i]+a)$,其中$c[i],k[i],x[j],y[j]$都是关于$i$或者$j$的变量,在$i$或者$j$确定时不变,$a$是个常量
然后发现$x[j]$带着一个$k[i]$的系数,不好优化
从另一个角度考虑,想想高中老师教给我们的线性规划
可以发现因为对于每次转移的$i$来说$c[i],k[i]$都不变,我们可以把$k[i]*x[j]+y[j]$看做是一条直线(初中的一次函数),$k[i]$是斜率,然后$x[j]$是横坐标,$y[j]$是纵坐标,别的都是关于$i$的变量或者常量,不用管。那么实际上我们求的$dp$数组的最终结果就是这条直线的截距的最值(初中的与y轴的交点)
然后我们发现发现对于每个下标我们都可以依照上面的$x[j],y[j]$把它表示成平面上的一个点$(x,y)$,然后这些点会形成一个点集,根据线性规划的知识,可以发现根据斜率的正/负我们的最优决策点都在下/上凸包上,于是可以优化了
当我们每次转移用到的斜率单调时,直接用单调队列维护凸包,先把斜率大/小的都踢掉,转移之后再把现在不在凸包上的点也都踢掉,最后把当前点加进去
当我们每次转移用到的斜率不单调时,就不能根据斜率直接踢了,但仍然用单调队列维护凸包,只是把找最优决策点用二分代替
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long len[N],dp[N],que[N],n,x,f,b;
inline long long c1(int p){return len[p]+p;}
inline long long c2(int p){return c1(p)+x+;}
inline long long K(int p){return *c1(p);}
inline long long X(int p){return c2(p);}
inline long long Y(int p){return c2(p)*c2(p)+dp[p];}
inline long long S(int a,int b){return (double)(Y(b)-Y(a))/(double)(X(b)-X(a));}
int main()
{
scanf("%lld%lld",&n,&x);
for(int i=;i<=n;i++)
scanf("%lld",&len[i]),len[i]+=len[i-];
que[f=b=]=;
for(int i=;i<=n;i++)
{
while(b-f>=&&S(que[f],que[f+])<K(i)) f++;
dp[i]=dp[que[f]]+(c1(i)-c2(que[f]))*(c1(i)-c2(que[f]));
while(b-f>=&&S(que[b-],i)<S(que[b],que[b-])) b--; que[++b]=i;
}
printf("%lld",dp[n]);
return ;
}
解题:HNOI 2008 玩具装箱的更多相关文章
- [HNOI 2008]玩具装箱
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- [bzoj 1010][HNOI 2008]玩具装箱
传送门 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号 ...
- BZOJ 1010 (HNOI 2008) 玩具装箱
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...
- 玩具装箱&土地购买
今天一天8h 写了两道斜率优化的题(别问我效率为什么这么低 代码bug太多了) 关键是思考的不周全 估计是写的题少手生 以后就会熟练起来了吧. 这道题显然有一个n^2的dp方程 设f[i]表示前i件物 ...
- [补档][HNOI 2008]GT考试
[HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...
- WIKIOI 1319 玩具装箱
1319 玩具装箱 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- C++之路进阶——codevs1319(玩具装箱)
1319 玩具装箱 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是 ...
随机推荐
- 如何使用Win+R快捷键打开自定义程序
鉴于大家对于提高效率这块有争议,更改了下标题. 大家平时一定都使用过Win+R运行快捷键, 在运行里可以快捷的打开一些系统软件,比如说输入mstsc是打开远程连接,输入explorer是打开文件管理器 ...
- linux常用的查看设备的命令
系统 # uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # ...
- jpa的@Query中"?"占位符的使用小坑
今天使用@Query自定义查询语句,出现了一个错误: java.lang.IllegalArgumentException: Parameter with that position [1] did ...
- hibernate.hbm.xml文件配置入门小结(1)
在Hibernate中,各表的映射文件xxx.hbm.xml可以通过工具生成,例如在使用MyEclipse开发时,它提供了自动生成映射文件的工具. hibernate.hbm.xml文件的基本结构如下 ...
- 新手使用github过程记录
初次接触github,记录下我的使用过程.一开始确实有些懵,但好在网上这类的教程有很多,过程也很详细易懂,按照网上的教程走完全没问题,感谢无私分享辛苦整理的各位前辈们. 注册github账号 创建一个 ...
- 玩下软工项目,第一轮--全局Context的获取,SQLite的建立与增删改查,读取用户通话记录信息
项目的Github地址:https://github.com/ggrcwxh/LastTime 采用基于git的多人协作开发模式 软件采用mvc设计模式,前端这么艺术的事我不太懂,交给斌豪同学去头疼了 ...
- Objective-C Json转Model(利用Runtime特性)
封装initWithNSDictionary:方法 该方法接收NSDictionary对象, 返回PersonModel对象. #pragma mark - 使用runtime将JSON转成Model ...
- 常用的比较器:实现方式Compareable和Comparator
class Dog{ int size; int weight; public Dog(int s, int w){ size = s; weight = w; } } 目的:对于Dog对象作为元素所 ...
- C++进阶之_类型转换
C++进阶之_类型转换 1.类型转换名称和语法 C风格的强制类型转换(Type Cast)很简单,不管什么类型的转换统统是: TYPE b = (TYPE)a C++风格的类型转换提供了4种类型转换操 ...
- CentOS 7 网卡命名修改为eth0格式
Linux 操作系统的网卡设备的传统命名方式是 eth0.eth1.eth2等,而 CentOS7 提供了不同的命名规则,默认是基于固件.拓扑.位置信息来分配.这样做的优点是命名全自动的.可预知的,缺 ...