解题:HNOI 2008 玩具装箱
搞了一晚上斜率优化,大概懂了一点,写写
原来常用的优化dp方法:做前缀和,预处理,数据结构维护
现在有转移方程长这样的一类dp:$dp[i]=min(dp[i],k[i]*x[j]+y[j]+c[i]+a)$,其中$c[i],k[i],x[j],y[j]$都是关于$i$或者$j$的变量,在$i$或者$j$确定时不变,$a$是个常量
然后发现$x[j]$带着一个$k[i]$的系数,不好优化
从另一个角度考虑,想想高中老师教给我们的线性规划
可以发现因为对于每次转移的$i$来说$c[i],k[i]$都不变,我们可以把$k[i]*x[j]+y[j]$看做是一条直线(初中的一次函数),$k[i]$是斜率,然后$x[j]$是横坐标,$y[j]$是纵坐标,别的都是关于$i$的变量或者常量,不用管。那么实际上我们求的$dp$数组的最终结果就是这条直线的截距的最值(初中的与y轴的交点)
然后我们发现发现对于每个下标我们都可以依照上面的$x[j],y[j]$把它表示成平面上的一个点$(x,y)$,然后这些点会形成一个点集,根据线性规划的知识,可以发现根据斜率的正/负我们的最优决策点都在下/上凸包上,于是可以优化了
当我们每次转移用到的斜率单调时,直接用单调队列维护凸包,先把斜率大/小的都踢掉,转移之后再把现在不在凸包上的点也都踢掉,最后把当前点加进去
当我们每次转移用到的斜率不单调时,就不能根据斜率直接踢了,但仍然用单调队列维护凸包,只是把找最优决策点用二分代替
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long len[N],dp[N],que[N],n,x,f,b;
inline long long c1(int p){return len[p]+p;}
inline long long c2(int p){return c1(p)+x+;}
inline long long K(int p){return *c1(p);}
inline long long X(int p){return c2(p);}
inline long long Y(int p){return c2(p)*c2(p)+dp[p];}
inline long long S(int a,int b){return (double)(Y(b)-Y(a))/(double)(X(b)-X(a));}
int main()
{
scanf("%lld%lld",&n,&x);
for(int i=;i<=n;i++)
scanf("%lld",&len[i]),len[i]+=len[i-];
que[f=b=]=;
for(int i=;i<=n;i++)
{
while(b-f>=&&S(que[f],que[f+])<K(i)) f++;
dp[i]=dp[que[f]]+(c1(i)-c2(que[f]))*(c1(i)-c2(que[f]));
while(b-f>=&&S(que[b-],i)<S(que[b],que[b-])) b--; que[++b]=i;
}
printf("%lld",dp[n]);
return ;
}
解题:HNOI 2008 玩具装箱的更多相关文章
- [HNOI 2008]玩具装箱
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- [bzoj 1010][HNOI 2008]玩具装箱
传送门 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号 ...
- BZOJ 1010 (HNOI 2008) 玩具装箱
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...
- 玩具装箱&土地购买
今天一天8h 写了两道斜率优化的题(别问我效率为什么这么低 代码bug太多了) 关键是思考的不周全 估计是写的题少手生 以后就会熟练起来了吧. 这道题显然有一个n^2的dp方程 设f[i]表示前i件物 ...
- [补档][HNOI 2008]GT考试
[HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...
- WIKIOI 1319 玩具装箱
1319 玩具装箱 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- C++之路进阶——codevs1319(玩具装箱)
1319 玩具装箱 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是 ...
随机推荐
- Jupyter 安装并配置工作路径[转]
1.通过python的pip方式安装jupyterpython和pip都安装好后,通过cmd进入命令提示窗口,找到python安装目录下的Script目录,例如我的是路径是:C:\Program Fi ...
- Hexo+gitment
Gitment是一个基于GitHub问题的评论系统,可以在没有任何服务器端实现的前端使用. 演示页面 中文简介 特征 入门 方法 定制 关于安全 特征 GitHub登录 Markdown / GFM支 ...
- jupyter通过notedown使用markdown
0 Problem 最近看了下李沐老师的mxnet教程,在使用jupyter的时候打开教程发现全是markdown源文,没有展示markdown格式的文字. 1 Reason 源代码是用markdow ...
- 用 Python 3 的 async / await 做异步编程
前年我曾写过一篇<初探 Python 3 的异步 IO 编程>,当时只是初步接触了一下 yield from 语法和 asyncio 标准库.前些日子我在 V2EX 看到一篇<为什么 ...
- [shell] 循环判断输入值
做个记录 until [[ $flag == "yes" || $flag == "exit" ]] do read -p "请确认统一/合服前后数据 ...
- scrum立会报告+燃尽图(第二周第五次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2250 一.小组介绍 组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶.公冶 ...
- 感谢——Thunder团队
团队软件的开发,已经进入第二个阶段——Beta版本了.回头看看,我们走过了很长的一段路,也经历了很多,有意见不一的争吵.有取得暂时成功时的欢欣鼓舞,我们就像一家人,就像那首歌中唱到的,“我们是一家人, ...
- tomcat启动时,报java.io.EOFException
在启动Tomcat的时候突然报出IO异常,具体异常如下图 在网上找了解决方法,测试了好几种,都不行,到最后看了一个博客解决了,在此记录一下. 百度了下,网上都是说去Tomcat目录下:将tomcat5 ...
- python 动态获取当前运行的类名和函数名的方法
一.使用内置方法和修饰器方法获取类名.函数名 python中获取函数名的情况分为内部.外部,从外部的情况好获取,使用指向函数的对象,然后用__name__属性 复制代码代码如下: def a():pa ...
- lintcode-425-电话号码的字母组合
425-电话号码的字母组合 Given a digit string excluded 01, return all possible letter combinations that the num ...