题面

搞了一晚上斜率优化,大概懂了一点,写写

原来常用的优化dp方法:做前缀和,预处理,数据结构维护

现在有转移方程长这样的一类dp:$dp[i]=min(dp[i],k[i]*x[j]+y[j]+c[i]+a)$,其中$c[i],k[i],x[j],y[j]$都是关于$i$或者$j$的变量,在$i$或者$j$确定时不变,$a$是个常量

然后发现$x[j]$带着一个$k[i]$的系数,不好优化

从另一个角度考虑,想想高中老师教给我们的线性规划

可以发现因为对于每次转移的$i$来说$c[i],k[i]$都不变,我们可以把$k[i]*x[j]+y[j]$看做是一条直线(初中的一次函数),$k[i]$是斜率,然后$x[j]$是横坐标,$y[j]$是纵坐标,别的都是关于$i$的变量或者常量,不用管。那么实际上我们求的$dp$数组的最终结果就是这条直线的截距的最值(初中的与y轴的交点)

然后我们发现发现对于每个下标我们都可以依照上面的$x[j],y[j]$把它表示成平面上的一个点$(x,y)$,然后这些点会形成一个点集,根据线性规划的知识,可以发现根据斜率的正/负我们的最优决策点都在下/上凸包上,于是可以优化了

当我们每次转移用到的斜率单调时,直接用单调队列维护凸包,先把斜率大/小的都踢掉,转移之后再把现在不在凸包上的点也都踢掉,最后把当前点加进去

当我们每次转移用到的斜率不单调时,就不能根据斜率直接踢了,但仍然用单调队列维护凸包,只是把找最优决策点用二分代替

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long len[N],dp[N],que[N],n,x,f,b;
inline long long c1(int p){return len[p]+p;}
inline long long c2(int p){return c1(p)+x+;}
inline long long K(int p){return *c1(p);}
inline long long X(int p){return c2(p);}
inline long long Y(int p){return c2(p)*c2(p)+dp[p];}
inline long long S(int a,int b){return (double)(Y(b)-Y(a))/(double)(X(b)-X(a));}
int main()
{
scanf("%lld%lld",&n,&x);
for(int i=;i<=n;i++)
scanf("%lld",&len[i]),len[i]+=len[i-];
que[f=b=]=;
for(int i=;i<=n;i++)
{
while(b-f>=&&S(que[f],que[f+])<K(i)) f++;
dp[i]=dp[que[f]]+(c1(i)-c2(que[f]))*(c1(i)-c2(que[f]));
while(b-f>=&&S(que[b-],i)<S(que[b],que[b-])) b--; que[++b]=i;
}
printf("%lld",dp[n]);
return ;
}

解题:HNOI 2008 玩具装箱的更多相关文章

  1. [HNOI 2008]玩具装箱

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  2. [bzoj 1010][HNOI 2008]玩具装箱

    传送门 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号 ...

  3. BZOJ 1010 (HNOI 2008) 玩具装箱

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...

  4. 玩具装箱&土地购买

    今天一天8h 写了两道斜率优化的题(别问我效率为什么这么低 代码bug太多了) 关键是思考的不周全 估计是写的题少手生 以后就会熟练起来了吧. 这道题显然有一个n^2的dp方程 设f[i]表示前i件物 ...

  5. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  6. WIKIOI 1319 玩具装箱

    1319 玩具装箱 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  9. C++之路进阶——codevs1319(玩具装箱)

    1319 玩具装箱  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是 ...

随机推荐

  1. JAVA验证码识别:基于jTessBoxEditorFX和Tesseract-OCR训练样本

    JAVA验证识别:基于jTessBoxEditorFX和Tesseract-OCR训练样本 工具准备: jTessBoxEditorFX下载:https://github.com/nguyenq/jT ...

  2. Jmeter接口测试(三)接口测试实践

    Jmeter 脚本编写一般分五个步骤: 1. 添加线程组 2. 添加 http 请求 3. 在 http 请求中写入接入 url.路径.请求方式和参数 4. 添加查看结果树 5. 调用接口.查看返回值 ...

  3. application/x-www-urlencoded与multipart/form-data

    学习ajax时,学到了GET与POST两种HTTP方法,于是去W3C看了二者的区别,里面提到了二者的编码类型不同,就在网上查阅了相关资料, 在这里把我查阅到的相关结果记录在此,方便以后学习,详细了解一 ...

  4. 获取一个数组里面第K大的元素

    如何在O(n)内获取一个数组比如{9, 1, 2, 8, 7, 3, 6, 4, 3, 5, 0, 9, 19, 39, 25, 34, 17, 24, 23, 34, 20}里面第K大的元素呢? 我 ...

  5. 算法与AI的暗黑面:3星|《算法的陷阱:超级平台、算法垄断与场景欺骗》

    算法的陷阱:超级平台.算法垄断与场景欺骗 全书讲算法与AI的暗黑面:价格歧视.导致算法军备竞赛.导致商家降价冲动降低.平台作恶(向劣质商家收费导致品质下降.与开发商一起分析用户隐私)等. 作者从商业. ...

  6. v-on 事件修饰符

    事件修饰符:   .stop 阻止冒泡 .prevent 阻止默认事件 .capture 添加事件侦听器时使用事件捕获模式 .self 只当该事件在该元素本身时(不是子元素)触发时才回调 .once ...

  7. Unity学习笔记草稿篇(一)为unity配置添加VS智能感知

    1. 打开要编辑的配置文件: 2. 菜单栏 -> xml -> 架构(schema) -> 添加或使用xsd.如下图所示:

  8. git实验

    四.实例应用 应用1.现有项目移植到git代管 进入目标项目,进行git初始化: 初始化:git init 修改config:git config -- local user.name '名称'  和 ...

  9. scrum立会报告+燃尽图(第二周第四次)

    此作业要求参考: https://edu.cnblogs.com/campus/nenu/2018fall/homework/2249 一.小组介绍 组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶.公 ...

  10. 学习调用第三方的WebService服务

    互联网上面有很多的免费webService服务,我们可以调用这些免费的WebService服务,将一些其他网站的内容信息集成到我们的应用中显示,下面就以查询国内手机号码归属地为例进行说明. 首先安利一 ...