【bzoj4004】装备购买
Solution
这题的话。。其实就是求\(n\)个\(m\)维向量的极大线性无关组,并且要求权值最大
然后套路什么的跟Portal-->bzoj3105和bzoj2460差不多,后面那题比较裸就没有写博了qwq
与这两题不同的是,这里换成了向量的线性无关
那其实写起来跟线性基差不多,本质上还是高斯消元,我们把一个向量看成矩阵中的一行,然后枚举去消这个向量的每一维,如果这个向量最终被消为零了那么就不能加进去作为基,否则的话就存在第一个没有被消为零的那一位中,与线性基不同的只是消的时候的运算变回了正常的高消方式而已
然后就是加入的顺序,依旧还是按照价值排序然后直接贪心
具体证明什么的还是要用到Portal-->拟阵
我们将每个装备看成一个\(m\)维向量,将这\(n\)个向量的集合记为\(S\),如果\(S\)的一个子集\(R\)不存在任何一个非空子集存在满足题目中的替换条件的元素(也就是线性相关),那么\(R\in I\)
然后就是证明这个东西是个拟阵:
1、\(S\)肯定是有限集合
2、遗传性:设\(A\in I\),由定义知\(A\)不存在任何一个非空子集存在满足替换的元素,所以对于任意\(B\subseteq A\),都有\(B\)满足这个性质(\(B\)的子集就是\(A\)的子集),所以\(B\in I\),所以\(I\)是遗传的
3、交换性质:设\(A,B\in I\),且\(|B|>|A|\),要证明\(\exists x\in B-A\)使得\(A\cup \{x\}\in I\),反证一波:假设对于\(\forall x\in B-A\)均有\(A\cup \{x\}\notin I\),那么\(B-A\)中的包含的向量均可以写成\(A\)的某个子集中向量的线性表示,所以\(B\)中所有的向量都可以写成\(A\)的某个子集中向量的线性表示,然后这个与前面的\(|B|>|A|\)是矛盾的,所以假设不成立,得证
(然后就发现这个东西的证明怎么跟bzoj3105的几乎一喵一样。。。把异或和为\(0\)换成了线性表示而已。。)
然后就可以给这个拟阵\(M\)关联一个权值函数\(w\),每个\(S\)中的向量对应的权值就是这件装备的价值,然后子集的权值就是包含向量的权值和
然后愉快贪心
(然后莫名其妙感觉自己写了两篇一喵一样的博。。。可能是错觉)
哦对以及b站的数据加强了一波所以要用long long否则会炸精度出锅qwq
代码大概长这样
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ld long double
using namespace std;
const int MAXN=510;
const ld eps=1e-8;
struct Data{
ld a[MAXN];
int val;
friend bool operator < (Data x,Data y)
{return x.val<y.val;}
}a[MAXN];
int base[MAXN];
int n,m,ans,cnt;
void solve();
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j)
scanf("%Lf",&a[i].a[j]);
for (int i=1;i<=n;++i)
scanf("%d",&a[i].val);
sort(a+1,a+1+n);
solve();
printf("%d %d\n",cnt,ans);
}
void solve(){
ans=0; cnt=0;
ld tmp;
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j){
if (fabs(a[i].a[j])>eps){
if (!base[j]){
base[j]=i;
++cnt; ans+=a[i].val;
break;
}
else{
tmp=a[i].a[j]/a[base[j]].a[j];
for (int k=1;k<=m;++k)
a[i].a[k]-=a[base[j]].a[k]*tmp;
}
}
}
}
【bzoj4004】装备购买的更多相关文章
- 【BZOJ4004】装备购买(线性基)
[BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...
- 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...
- 【BZOJ】【4004】【JLOI2015】装备购买
拟阵/贪心 题解戳这里:http://blog.csdn.net/popoqqq/article/details/45148309 思路: 裸拟阵…… 维护线性基,将武器按价格排序,从小到大塞进去,如 ...
- bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 337 Solved: 139[Submit][Status ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
- BZOJ 4004: [JLOI2015]装备购买
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1154 Solved: 376[Submit][Statu ...
- 洛谷P3265 [JLOI2015]装备购买 [线性基]
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...
- bzoj 4004 [JLOI2015]装备购买 拟阵+线性基
[JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 547[Submit][Status][Dis ...
- [JLOI2015]装备购买(线性基)
[JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...
随机推荐
- redis 批量删除操作
redis 批量删除操作 需要在redis里面清空一批数据,redis没有支持通配符删除, 只有del key1 key2 ... 但是可以通配符获取 KEYS PATTERN 然后利用linux管道 ...
- Python科学计算库灬numpy
Numpy NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.Numpy许多底层函数实际上是用C编写的,因此它的矩阵向量计算速度是原生Python中无法比拟的. numpy属性 维 ...
- windows8和windows server2012不联网安装.net 3.5(包括2.0和3.0)
安装完win8后 发现系统默认没有安装.net3.5 如果使用在线更新的话需要很久才能完成,特别是当前的网速以及微软的服务器.速度很忙,其实我们利用win8的安装盘就可以不需要联网更新,而且几分钟就搞 ...
- linux 命令自动补全包
linux 其他知识目录 rhel7如果使用最小化安装后,tab键默认是不能自动补全命令的 执行yum install bash-completion之后重启系统正常.
- 根据Unicode码生成汉字
最近需要一批汉字字符数据,类似数字字符与ASCII码之间的对应关系,汉字字符与Unicode码之间也存在对应关系. 所以可以遍历Unicode码批量生成汉字. 其中,汉字为宽字符,输出时候注意需要修改 ...
- php memcache 使用学习
Memcache是什么Memcache是danga.com的一个项目,最早是为 LiveJournal 服务的,目前全世界不少人使用这个缓存项目来构建自己大负载的网站,来分担数据库的压力.它可以应对任 ...
- 王者荣耀交流协会 - 第7次Scrum会议(第二周)
1.例会照片 照片由王超(本人)拍摄,组内成员刘耀泽,高远博,王磊,王玉玲,王超,任思佳,袁玥全部到齐. 2.时间跨度: 2017年10月26日 17:05 — 17:47 ,总计42分钟. 3.地 ...
- DCOM初步窥探二
1.COM进程透明性表现在“组件对象和客户程序可以拥有各自的空间,也可以共享同一个进程空间”. COM负责把客户的调用正确传到组件对象中,并保证参数传递的正确性. 组件对象和客户代码不必考虑调用传递的 ...
- iOS- 指压即达,如何集成iOS9里的3D Touch
1.前言 随着6S的到来,3DTouch被各大热门APP迅速普及,博主亲自体验后,发现使用便捷性大幅提高,随后自己照着文档,写了个Demo出来,分享给大家,希望能对有需要的朋友提供有一些帮助. 2 ...
- Swift-存储属性,计算属性,类属性
//类的属性定义 class Student: NSObject { // 定义属性 // 定义存储属性 var age : Int = var name :String? var mathScore ...