题目描述

给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ 、$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值。

$n,m\le 10^5$


题解

后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

两个前缀的最长公共后缀,在正串后缀自动机上体现为pre树上两点LCA的深度。

考虑统计pre树上一个点的贡献:对于两个前缀 $x$ 、$y$ ,它能够影响的询问左端点小于等于 $x$ ,右端点大于等于 $y$ 。因此影响最大化的前缀对就是排序后相邻的两个,每次只需要考虑这些前缀对。

那么我们考虑两个子树合并的过程,使用STL-set维护前驱后继成为贡献。这个过程可以启发式合并,把小的合并到大的中。

剩下的就是对于询问 $[l,r]$ ,询问前缀对中第一个 $\ge l$ ,第二个 $\le r$ 的最大值。离线+扫描线+树状数组维护前缀最小值即可。

时间复杂度瓶颈在于启发式合并STL-set,为 $O(n\log^2n)$ 。

#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
using namespace std;
struct data
{
int x , y , z;
data() {}
data(int a , int b , int c) {x = a , y = b , z = c;}
bool operator<(const data &a)const {return x < a.x;}
}a[N * 20] , q[N];
set<int> s[N];
int pre[N] , c[N][2] , dis[N] , val[N] , last = 1 , tot = 1 , head[N] , to[N] , next[N] , cnt , bl[N] , ta , f[N] , n , ans[N];
char str[N];
void insert(int k , int ch)
{
int p = last , np = last = ++tot;
dis[np] = dis[p] + 1 , s[np].insert(k);
while(p && !c[p][ch]) c[p][ch] = np , p = pre[p];
if(!p) pre[np] = 1;
else
{
int q = c[p][ch];
if(dis[q] == dis[p] + 1) pre[np] = q;
else
{
int nq = ++tot;
memcpy(c[nq] , c[q] , sizeof(c[q]));
dis[nq] = dis[p] + 1 , pre[nq] = pre[q] , pre[np] = pre[q] = nq;
while(p && c[p][ch] == q) c[p][ch] = nq , p = pre[p];
}
}
}
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
set<int>::iterator j , k;
for(i = head[x] ; i ; i = next[i])
{
dfs(to[i]);
if(s[bl[x]].size() > s[bl[to[i]]].size())
{
for(j = s[bl[to[i]]].begin() ; j != s[bl[to[i]]].end() ; j ++ )
{
k = s[bl[x]].upper_bound(*j);
if(k != s[bl[x]].end()) a[++ta] = data(*j , *k , dis[x]);
if(k != s[bl[x]].begin()) a[++ta] = data(*--k , *j , dis[x]);
s[bl[x]].insert(*j);
}
}
else
{
for(j = s[bl[x]].begin() ; j != s[bl[x]].end() ; j ++ )
{
k = s[bl[to[i]]].upper_bound(*j);
if(k != s[bl[to[i]]].end()) a[++ta] = data(*j , *k , dis[x]);
if(k != s[bl[to[i]]].begin()) a[++ta] = data(*--k , *j , dis[x]);
s[bl[to[i]]].insert(*j);
}
bl[x] = bl[to[i]];
}
}
}
inline void fix(int x , int a)
{
int i;
for(i = x ; i <= n ; i += i & -i) f[i] = max(f[i] , a);
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans = max(ans , f[i]);
return ans;
}
int main()
{
int m , i , p;
scanf("%d%d%s" , &n , &m , str + 1);
for(i = 1 ; i <= n ; i ++ ) insert(i , str[i] - '0');
for(i = 2 ; i <= tot ; i ++ ) add(pre[i] , i);
for(i = 1 ; i <= tot ; i ++ ) bl[i] = i;
dfs(1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &q[i].x , &q[i].y) , q[i].z = i;
sort(a + 1 , a + ta + 1) , sort(q + 1 , q + m + 1);
for(p = ta , i = m ; i ; i -- )
{
while(p && a[p].x >= q[i].x) fix(a[p].y , a[p].z) , p -- ;
ans[q[i].z] = query(q[i].y);
}
for(i = 1 ; i <= m ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组的更多相关文章

  1. LOJ6041. 「雅礼集训 2017 Day7」事情的相似度 [后缀树,LCT]

    LOJ 思路 建出反串的后缀树,发现询问就是问一个区间的点的\(lca\)的深度最大值. 一种做法是dfs的时候从下往上合并\(endpos\)集合,发现插入一个点的时候只需要把与前驱后继的贡献算进去 ...

  2. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  3. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  4. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  5. 【LOJ6041】「雅礼集训 2017 Day7」事情的相似度(用LCT维护SAM的parent树)

    点此看题面 大致题意: 给你一个\(01\)串,每次询问前缀编号在一段区间内的两个前缀的最长公共后缀的长度. 离线存储询问 考虑将询问离线,按右端点大小用邻接表存下来(直接排序当然也可以啦). 这样的 ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  7. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  8. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

  9. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...

随机推荐

  1. webUploader实现大文件分片,断点续传

    问题: 公司现在的业务需求是要上传一个大文件,上一次写了一篇博客,做了一个简单的文件上传,支持单文件,大型文件上传 现在对之前的上传进行优化,支持断点续传,秒传功能 上次博客:[http://www. ...

  2. [agc002D]Stamp Rally-[并查集+整体二分]

    Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...

  3. python 多线程笔记(5)-- 生产者/消费者模式

    我们已经知道,对公共资源进行互斥访问,可以使用Lock上锁,或者使用RLock去重入锁. 但是这些都只是方便于处理简单的同步现象,我们甚至还不能很合理的去解决使用Lock锁带来的死锁问题. 要解决更复 ...

  4. CF 959 E. Mahmoud and Ehab and the xor-MST

    E. Mahmoud and Ehab and the xor-MST https://codeforces.com/contest/959/problem/E 分析: 每个点x应该和x ^ lowb ...

  5. P3374 【模板】树状数组 1(单点增减,区间求和)

    P3374 [模板]树状数组 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示 ...

  6. Training: MySQL I (MySQL, Exploit, Training)

    题目链接:http://www.wechall.net/challenge/training/mysql/auth_bypass1/index.php?highlight=christmas 的确是非 ...

  7. 一个web应用的诞生(4)--数据存储

    上一章实现了登录的部分功能,之所以说是部分功能,是因为用户名和密码写成固定值肯定是不可以的,一个整体的功能,至少需要注册,登录,密码修改等,这就需要提供一个把这些值存储到数据库的能力. 当前的主流数据 ...

  8. KEIL5的安装

    安装注意事项 1.最好不要安装在带有中文路径的文件夹. 2.试用版的Keil MDK只能编译32K以下的代码,代码大于32K只能使用正版或破解版才能编译通过. 安装MKD 这里选择MKD512A版本安 ...

  9. python程序设计——面向对象程序设计:继承

    继承是为代码复用和设计复用而设计的 在继承关系中,已有的.设计好的类称为父类或基类,新设计的类为子类或派生类 派生类可以继承父类的公有成员,但不能继承其私有成员 如果需要在派生类中调用基类的方法,可以 ...

  10. Eclipse项目导入到Android Studio中

    背景 最近需要将Eclipse中的android项目导入到Android Studio中!倒腾一番,记录如下! 步骤1 打开Android Studio(下文称AS),选择Import project ...