Two Rabbits

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 1274 Accepted Submission(s): 641

Problem Description

Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.

The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.

At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.

For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn’t jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.

Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.

Now they want to find out the maximum turns they can play if they follow the optimal strategy.

Input

The input contains at most 20 test cases.

For each test cases, the first line contains a integer n denoting the number of stones.

The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)

The input ends with n = 0.

Output

For each test case, print a integer denoting the maximum turns.

Sample Input

1

1

4

1 1 2 1

6

2 1 1 2 1 3

0

Sample Output

1

4

5

Hint

For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.

For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.

这道题大意就是求最长非连续回文子串,但是序列是连续的形成环的,同常的做法是倍增,然后求长度限制为n的区间的最长回文串。但是倍增要注意,如果两只兔子站在同一个起点上,那么就有长度n-1区间的回文串长度加1,当然起点是n-1区间之外的点,所以结果应该在dp(n),和dp(n-1)+1之间比较。

网上看到还有一种解法不用倍增,直接当成链,然后分割链,两条链的和就是最优解,

关于区间DP,可以参照这个博客

http://blog.csdn.net/dacc123/article/details/50885903

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int a[2005];
int dp[2005][2005];
int n;
int main()
{
int t; while(scanf("%d",&n)!=EOF)
{
if(n==0)
break;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i];
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=2*n;i++)
dp[i][i]=1;
for(int l=1;l<=2*n;l++)
{
for(int i=1;i+l<=2*n;i++)
{
int j=i+l;
dp[i][j]=max(dp[i+1][j],max(dp[i][j-1],(a[i]==a[j]?dp[i+1][j-1]+2:dp[i+1][j-1]))); }
}
int ans=0;
for(int i=1;i<=n;i++)
ans=max(ans,dp[i][i+n-1]);
for(int i=1;i<=n;i++)
ans=max(ans,dp[i][i+n-2]+1);
printf("%d\n",ans);
} return 0;
}

HDU 4745 Two Rabbits(区间DP,最长非连续回文子串)的更多相关文章

  1. hdu 4745 Two Rabbits 区间DP

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有两只兔子Tom Jerry, 他们在一个用石头围城的环形的路上跳, Tom只能顺时针跳,Jerr ...

  2. HDU 4745 Two Rabbits 区间dp_回文序列

    题目链接: http://blog.csdn.net/scnu_jiechao/article/details/11759333 Two Rabbits Time Limit: 10000/5000 ...

  3. (最长回文子串 线性DP) 51nod 1088 最长回文子串

    输入一个字符串Str,输出Str里最长回文子串的长度. 回文串:指aba.abba.cccbccc.aaaa这种左右对称的字符串. 串的子串:一个串的子串指此(字符)串中连续的一部分字符构成的子(字符 ...

  4. 最长连续回文串(最优线性时间O(n))

    转自:http://blog.csdn.net/hopeztm/article/details/7932245 Given a string S, find the longest palindrom ...

  5. HDU 4745 Two Rabbits(最长回文子序列)

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有一个环,现在有两只兔子各从一个点开始起跳,一个沿顺时针,另一个沿逆时针,只能在一圈之内跳,并且每 ...

  6. HDU 4745 Two Rabbits (2013杭州网络赛1008,最长回文子串)

    Two Rabbits Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. hdu 4745 Two Rabbits

    思路:求最长回文子串的长度!代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #incl ...

  8. HDU 4632 Palindrome subsequence (区间DP)

    题意 给定一个字符串,问有多少个回文子串(两个子串可以一样). 思路 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字符串中[i,j]位置中出现的回文子序 ...

  9. HDU Palindrome subsequence(区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/Oth ...

随机推荐

  1. 监视在input框中按下回车(enter) js实现

    function getKey(event) { if (event.keyCode == 13) { alert("我是回车键"); } } <input type=&qu ...

  2. NET Core 环境搭建和命令行CLI入门[转]

      NET Core 环境搭建和命令行CLI入门 时间:2016-07-06 01:48:19      阅读:258      评论:0      收藏:0      [点我收藏+]   标签: N ...

  3. Socket.BeginConnect 方法

    Socket.BeginConnect 方法 (IPAddress, Int32, AsyncCallback, Object) 开始一个对远程主机连接的异步请求. 主机由 IPAddress 和端口 ...

  4. 阮一峰---javascript系列

    2013.05.11:如何做到 jQuery-free?(29条评论) 2013.01.23:JavaScript Source Map 详解(14条评论) 2013.01.14:Javascript ...

  5. Facebook开源技术识别网购评论

    1.自然语言处理2.情感分析3.监督学习模型4.词向量 5.fasttext 汉藏语系,是语言系属分类(Language family)的一种,分为汉语族和藏缅语族,是用汉语和藏语的名称概括与其有亲属 ...

  6. linux mint 19解决 输入法问题

    安装搜狗后出现 You're currently running Fcitx with GUI, but fcitx-configtool couldn't be found, the package ...

  7. 了解一下Windows Cracker

    Windows Cracker 消息拆析宏 可以为消息进行参数分解 无需记住或查阅资料来了解WParam和lParam的意义 可以忘记旧的消息处理方式:switch/case 不适合于大型复杂的需要处 ...

  8. CMD命令进入文件夹

    cmd 进入E文件夹 E: 查看文件夹目录  dir 进入某个文件夹 cd 目录

  9. mysql表无权限访问

    当网页出现以上问题时的解决方法: 今天在两台服务器间转移网站,最后把域名解释设置好后等待...然后CMD查看DNS解释情况..解释成功-输入网址-却出现如上信息,首先用#ls -l查看mysql下的v ...

  10. c#接口作为参数传递、返回

    接口做为参数传递,传递的是实现了接口的对象: 接口作为类型返回,返回的是实现了接口的对象. 接口的传递与返回就是围绕着上面的两句话展开的.