Two Rabbits

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 1274 Accepted Submission(s): 641

Problem Description

Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.

The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.

At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.

For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn’t jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.

Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.

Now they want to find out the maximum turns they can play if they follow the optimal strategy.

Input

The input contains at most 20 test cases.

For each test cases, the first line contains a integer n denoting the number of stones.

The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)

The input ends with n = 0.

Output

For each test case, print a integer denoting the maximum turns.

Sample Input

1

1

4

1 1 2 1

6

2 1 1 2 1 3

0

Sample Output

1

4

5

Hint

For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.

For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.

这道题大意就是求最长非连续回文子串,但是序列是连续的形成环的,同常的做法是倍增,然后求长度限制为n的区间的最长回文串。但是倍增要注意,如果两只兔子站在同一个起点上,那么就有长度n-1区间的回文串长度加1,当然起点是n-1区间之外的点,所以结果应该在dp(n),和dp(n-1)+1之间比较。

网上看到还有一种解法不用倍增,直接当成链,然后分割链,两条链的和就是最优解,

关于区间DP,可以参照这个博客

http://blog.csdn.net/dacc123/article/details/50885903

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int a[2005];
int dp[2005][2005];
int n;
int main()
{
int t; while(scanf("%d",&n)!=EOF)
{
if(n==0)
break;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i];
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=2*n;i++)
dp[i][i]=1;
for(int l=1;l<=2*n;l++)
{
for(int i=1;i+l<=2*n;i++)
{
int j=i+l;
dp[i][j]=max(dp[i+1][j],max(dp[i][j-1],(a[i]==a[j]?dp[i+1][j-1]+2:dp[i+1][j-1]))); }
}
int ans=0;
for(int i=1;i<=n;i++)
ans=max(ans,dp[i][i+n-1]);
for(int i=1;i<=n;i++)
ans=max(ans,dp[i][i+n-2]+1);
printf("%d\n",ans);
} return 0;
}

HDU 4745 Two Rabbits(区间DP,最长非连续回文子串)的更多相关文章

  1. hdu 4745 Two Rabbits 区间DP

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有两只兔子Tom Jerry, 他们在一个用石头围城的环形的路上跳, Tom只能顺时针跳,Jerr ...

  2. HDU 4745 Two Rabbits 区间dp_回文序列

    题目链接: http://blog.csdn.net/scnu_jiechao/article/details/11759333 Two Rabbits Time Limit: 10000/5000 ...

  3. (最长回文子串 线性DP) 51nod 1088 最长回文子串

    输入一个字符串Str,输出Str里最长回文子串的长度. 回文串:指aba.abba.cccbccc.aaaa这种左右对称的字符串. 串的子串:一个串的子串指此(字符)串中连续的一部分字符构成的子(字符 ...

  4. 最长连续回文串(最优线性时间O(n))

    转自:http://blog.csdn.net/hopeztm/article/details/7932245 Given a string S, find the longest palindrom ...

  5. HDU 4745 Two Rabbits(最长回文子序列)

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有一个环,现在有两只兔子各从一个点开始起跳,一个沿顺时针,另一个沿逆时针,只能在一圈之内跳,并且每 ...

  6. HDU 4745 Two Rabbits (2013杭州网络赛1008,最长回文子串)

    Two Rabbits Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. hdu 4745 Two Rabbits

    思路:求最长回文子串的长度!代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #incl ...

  8. HDU 4632 Palindrome subsequence (区间DP)

    题意 给定一个字符串,问有多少个回文子串(两个子串可以一样). 思路 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字符串中[i,j]位置中出现的回文子序 ...

  9. HDU Palindrome subsequence(区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/Oth ...

随机推荐

  1. 详解JNDI的lookup资源引用 java:/comp/env

    ENC的概念:     The application component environment is referred to as the ENC, the enterprise naming c ...

  2. 【转】struts2.5框架使用通配符指定方法(常见错误)

    在学习struts框架时经常会使用到通配符调用方法,如下: <package name="shop" namespace="/" extends=&quo ...

  3. 使用Java程序片段动态生成表格

    <% String[] bookName = { "javaweb典型模块大全", "java从入门到放弃", "C语言程序设计" } ...

  4. Hbase1.1.0.1配置集群

    参考链接 http://wuyudong.com/archives/119?utm_source=tuicool 参考链接 http://www.cnblogs.com/archimedes/p/45 ...

  5. scala 官方教程

    http://zh.scala-tour.com/#/expression-and-values scala

  6. android 近百个源码项目

    http://www.cnblogs.com/helloandroid/articles/2385358.html

  7. SQLServer------如何让标识列重新开始计算

    方法: DBCC CHECKIDENT (表名, RESEED, )

  8. Linux dstat 命令

    dstat 是一个监控系统资源使用情况的工具,常见用法如下: [root@localhost ~]$ yum install -y dstat [root@localhost ~]$ dstat -- ...

  9. Java创建数组的三种方法

    ■ 第一种: int[] arr=new int[6]; arr[0] = 1; arr[1] = 2 arr[2] = 3; arr[3] = 4; arr[4] = 5; arr[5] = 6; ...

  10. jquery获取父级元素、子级元素、兄弟元素的方法

    jQuery.parent(expr) 找父亲节点,可以传入expr进行过滤,比如$("span").parent()或者$("span").parent(&q ...