1. 使用循环和向量化两种不同的方法来计算 100 以内的质数之和。

先定义个判断质数的函数。ps:纯手工打造,原生态,哈哈。

def checkprime(x):
if x<=1:
return False;
prime=True;
for i in range(2 , 1+x/2):
if x%i == 0:
prime = False;
break;
return prime;

使用循环方法来计算 100 以内的质数之和。

def sumprimebyiter(n=100):
primesum=0
for i in range(1, n+1):
if( True == checkprime(i)):
primesum += i
return primesum %timeit sumprimebyiter(100)
10000 loops, best of 3: 138 µs per loop

使用向量化的方法来计算 100 以内的质数。ps:怎么将判断质数的函数应用到向量中的每一个元素,可是花了好几分钟来寻找,终于发现 map 可以实现这个功能。后来又发现 np.vectorize 也可以实现同样功能。

import numpy as np
def sumprimebyarr(n=100):
a = np.arange(1,n+1)
# return sum(a[np.array(map(CheckPrime, a))]) # 此处是之前用 Python 自带的 map 把函数应用到向量的每个元素
check_prime_vec = np.vectorize(CheckPrime) # 此处代码用到了 np.vectorize,可以把外置函数应用到向量的每个元素
return np.sum(a[check_prime_vec(a)]) %timeit sumprimebyarr(100)
10000 loops, best of 3: 204 µs per loop

上面两种方法都使用魔术函数 %timeit 计算了执行时间,意外的是,向量化的方法竟然没有循环快,一定是哪儿不对,待我好好检查下,再补充该题答案。

2. 模拟一个醉汉在二维空间上的随机漫步。

先试试一维空间上的随机漫步。既然本周学了 Numpy,这里就直接上 np.random 了。

%pylab inline
Populating the interactive namespace from numpy and matplotlib
nsteps = 1000
draws = np.random.randint(-1,2,size=nsteps)
walk = draws.cumsum()
plot(walk)
[<matplotlib.lines.Line2D at 0x7f52c3534250>]

再来看下二维的。

nsteps = 1000
draws = np.random.randint(-1,2,size=(2,nsteps))
walks = draws.cumsum(1)
plot(walks[0,:],walks[1,:])
[<matplotlib.lines.Line2D at 0x7f52c34cf3d0>]

先生成 1000 个随机漫步方向,方向是从 {-1, 0, 1} 中随机挑两个值(两个值也可相等)作为移动方向,所以每次移动有 3×3=9 种选择,初始位置也是 9 种选择,cumsum 函数是将每次的移动累加,最后通过 plot 画出来。

代码调通之前,我都没想到代码能这么少。Python 还是好用,这要是用 C++ 写,得多少代码啊。

3. 使用梯形法计算一个二次函数的数值积分。

梯形法计算数值积分,就是把自变量分成无数小段,每一小段的面积用一个梯形面积近似,当小段的个数无限多,小段的长度无限小时,所有的小梯形面积加起来,就近似等于该函数的数值积分。如下图所示:

原理很简单,代码也很简单:

import numpy as np
def CompIntegralbyladder(func,x0,x1):
wholearea = 0
step = 0.1
for i in np.arange(x0, x1, step):
wholearea += (func(i)+func(i+step))*step/2; # Compute the Trapezoidal area
return wholearea;

该函数可以计算任意函数的积分。函数写好了,都分隔成长度为 0.1 的小区间。先来测试下指数函数的积分。

\[\int_{1}^{4} e^{x}dx
\]

CompIntegralbyladder(np.exp,1,4)
51.923094224367127

来看下正确答案。注意指数函数的不定积分还是指数函数本身。

from sympy.interactive import printing
printing.init_printing(use_latex=True)

\[\int_{1}^{4}e^{x}=e^{4}-e^{1}
\]

np.exp(4)-np.exp(1)
51.879868204685188

附上指数函数的图形。

%pylab inline
Populating the interactive namespace from numpy and matplotlib
import numpy as np
x = np.linspace(-5, 5, num = 100)
y = np.exp(x)
import matplotlib.pyplot as plt
plt.plot(x,y)
plt.show()

再看看计算个二次函数的积分。随便写个二次函数。

\[2x^{2}+3x+4
\]

def Quadratic(x):
return 2*x**2 + 3*x + 4

先来看看这个函数的图形。

import numpy as np
x = np.linspace(-5, 5, num = 100)
y = Quadratic(x)
import matplotlib.pyplot as plt
plt.plot(x,y)
plt.show()

我们就计算该二次函数从 -5 到 5 的积分吧。

\[\int_{-5}^{5}2x^{2}+3x+4 dx
\]

CompIntegralbyladder(Quadratic,-5,5)
206.69999999999825

下面来计算下正确的积分值。

因为:

\[\int2x^{2}+3x+4dx=\frac{2}{3}x^3+\frac{3}{2}x^2+4x
\]

所以:

\[\int_{-5}^{5}2x^{2}+3x+4dx=[\frac{2}{3}x^3+\frac{3}{2}x^2+4x]_{-5}^{5}
\]

def Integral(x):
return (2*x**3)/3 + (3*x**2)/2 + 4*x
Integral(5)-Integral(-5)
207

可见,梯形法计算积分还是比较准确的。

Numpy 练习题的更多相关文章

  1. numpy练习题

    1. 导入numpy库并简写为 np import numpy as np 2. 打印numpy的版本和配置说明 print(np.__version__) print(np.show_config( ...

  2. 101道Numpy、Pandas练习题

    无论是数据分析还是机器学习,数据的预处理必不可少. 其中最常用.最基础的Python库非numpy和pandas莫属,很多初学者可能看了很多教程,但是很快就把用法忘光了. 光看不练假把式,今天向大家推 ...

  3. 快速入门Numpy

    教你十分钟学会使用numpy. 简单介绍一下numpy的话,这就是一个基于多维数组的python科学计算的核心库. 基本信息 # 一般用np作为numpy的缩写 import numpy as np ...

  4. AI 学习路线

    [导读] 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识.数据分析挖掘.机器学习.深度学习.强化学习.前 ...

  5. [转]numpy 100道练习题

    100 numpy exercise 翻译:YingJoy 网址: https://www.yingjoy.cn/ 来源:https://github.com/rougier/numpy-100 Nu ...

  6. PYTHON练习题 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数。

    Python 练习 标签: Python Python练习题 Python知识点 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数,如果大于预设的 ...

  7. 对numpy.meshgrid()理解

    一句话解释numpy.meshgrid()——生成网格点坐标矩阵.关键词:网格点,坐标矩阵 网格点是什么?坐标矩阵又是什么鬼?看个图就明白了: 图中,每个交叉点都是网格点,描述这些网格点的坐标的矩阵, ...

  8. python数据分析三剑客之: Numpy

    数据分析三剑客之: Numpy 一丶Numpy的使用 ​ numpy 是Python语言的一个扩展程序库,支持大维度的数组和矩阵运算.也支持针对数组运算提供大量的数学函数库 创建ndarray # 1 ...

  9. NumPy 百题大冲关,冲鸭!

    角色名称:NumPy 角色描述:NumPy是一个NASA都在用的扩展库. NumPy提供了许多高级的数值编程技能,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而战斗.是很多大型 ...

随机推荐

  1. 【UOJ274】【清华集训2016】温暖会指引我们前行 LCT

    [UOJ274][清华集训2016]温暖会指引我们前行 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很 ...

  2. 批量远程执行linux服务器程序--基于paramiko(多线程版)

    批量远程执行linux服务器程序--基于paramiko paramiko模块是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接 具体安装方法这里不写,网 ...

  3. WCF(四) 绑定

    绑定 是一个制定好的通道栈,包含了协议通道,传输通道和编码器.从功能上来看,一个绑定集成了通信模式.可靠性.安全性.事务传播和互操作性 绑定方式分两种:代码中和配置文件中绑定 1: 2: 3.配置ap ...

  4. java类的成员初始化顺序和初始化块知识

    java类的成员初始化顺序和初始化块知识 转自:http://blog.csdn.net/lgfeng218/article/details/7606735 属性.方法.构造方法和自由块都是类中的成员 ...

  5. nginx如何利用自定义的conf文件启动?

    1.进入nginx的安装目录; 2.nginx -s -c conf/my.conf  (校验该文件是否有效)   nginx -s -c conf/my.conf 命令会卡死,存疑 3.start ...

  6. postgresql----时间类型

    postgresql支持的时间类型如下图所示: 日期 date: 建议日期的输入格式为1997-01-01,虽然也支持19970101,1/1/1997,Jan-1-1997等多种格式. 时间戳 ti ...

  7. RGBA HSB opengl光照模型

    RGBA HSB   HSV颜色模型对应于画家的配色的方法.画家用改变色浓和色深的方法来从某种纯色获得不同色调的颜色.其做法是:在一种纯色中加入白色以改变色浓,加入黑色以改变色深,同时加入不同比例的白 ...

  8. python为什么需要reload(sys)后设置编码

    python在安装时,默认的编码是ascii,当程序中出现非ascii编码时,python的处理常常会报这样的错UnicodeDecodeError: 'ascii' codec can't deco ...

  9. Python高级编程技巧(转)

    译文:http://blog.jobbole.com/61171/ 本文展示一些高级的Python设计结构和它们的使用方法.在日常工作中,你可以根据需要选择合适的数据结构,例如对快速查找性的要求.对数 ...

  10. django自带权限机制

    1. Django权限机制概述 权限机制能够约束用户行为,控制页面的显示内容,也能使API更加安全和灵活:用好权限机制,能让系统更加强大和健壮.因此,基于Django的开发,理清Django权限机制是 ...