复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答
六、(本题10分) 设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似.
证明 由 $A$ 是幂零阵可知, $A$ 的特征值全为零. 设 $P$ 为非异阵, 使得 $$P^{-1}AP=J=\mathrm{diag}\{J_{r_1}(0),J_{r_2}(0),\cdots,J_{r_k}(0)\}$$ 为 Jordan 标准型. 下面通过三段论法来证明本题的结论.
Step 1$-$对 Jordan 块 $J_{r_i}(0)$ 进行证明. 注意到 $$e^{J_{r_i}(0)}=I_{r_i}+\frac{1}{1!}J_{r_i}(0)+\frac{1}{2!}J_{r_i}(0)^2+\cdots+\frac{1}{(r_i-1)!}J_{r_i}(0)^{r_i-1}$$ $$=\begin{pmatrix} 1 & \dfrac{1}{1!} & \cdots & \cdots & \dfrac{1}{(r_i-1)!} \\ & 1 & \dfrac{1}{1!} & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \dfrac{1}{1!} \\ & & & & 1 \\ \end{pmatrix},$$ 故 $e^{J_{r_i}(0)}$ 的特征值全为 1, 其几何重数等于 $r_i-r(e^{J_{r_i}(0)}-I_{r_i})=r_i-(r_i-1)=1$. 因此 $e^{J_{r_i}(0)}$ 只有一个 Jordan 块, 其 Jordan 标准型为 $J_{r_i}(1)=I_{r_i}+J_{r_i}(0)$, 即存在非异阵 $Q_i$, 使得 $e^{J_{r_i}(0)}=Q_i(I_{r_i}+J_{r_i}(0))Q_i^{-1}\,(1\leq i\leq k)$.
Step 2$-$对 Jordan 标准型 $J$ 进行证明. 令 $Q=\mathrm{diag}\{Q_1,Q_2,\cdots,Q_k\}$, 则 $Q$ 为非异阵, 满足 $$e^J=\mathrm{diag}\{e^{J_{r_1}(0)},e^{J_{r_2}(0)},\cdots,e^{J_{r_k}(0)}\}=Q(I_n+J)Q^{-1}.$$
Step 3$-$对一般的矩阵 $A$ 进行证明. 由 Step 1 和 Step 2 可得: $$e^A=e^{PJP^{-1}}=Pe^JP^{-1}=PQ(I_n+J)Q^{-1}P^{-1}=PQ(I_n+P^{-1}AP)Q^{-1}P^{-1}=(PQP^{-1})(I_n+A)(PQP^{-1})^{-1},$$ 即 $e^A$ 与 $I_n+A$ 相似. $\Box$
注 1 在 Step 1 的证明过程中, 也可以用行列式因子或极小多项式的讨论来代替几何重数的讨论, 具体请参考高代白皮书的 $\S$ 7.2.6. 另外, 也可以利用高代白皮书的例 7.34 来证明结论 (由成然同学提供).
注 2 本题共有 59 位同学完全做对 (得分在 9$-$10 之间), 分别是 (排名不分先后): 曾世博、张菲诺、刘宇其、阮兆华、孙澍砾、何宇翔、高诚、张崇轩、魏子傅、吴重霖、陈域、郭宇城、许智锟、徐嘉华、赵铃雅、成然、史书珣、林妙可言、时天宇、吴汉、张逸伦、戴逸翔、崔镇涛、朱静静、蒋正浩、张君格、余张伟、魏一鸣、王熙元、林翰峣、刘星瑀、蔡羽桐、王成文健、詹远瞩、韩卓烨、尹尚炜、葛珈玮、张昰昊、朱柏青、张雷、汪子怡、刘俊晨、王炯逍、王嘉辉、方博越、李俊博、张继霖、何瑀、王语姗、钟函廷、漆川烨、尚振航、陈昱嘉、刘子天、李子靖、张嘉璇、熊子恺、李俊康、程梓兼.
复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答的更多相关文章
- 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...
- 复旦大学2018--2019学年第二学期(18级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶实对称阵, 证明: $A$ 有 $n$ 个不同的特征值当且仅当对 $A$ 的任一特征值 $\lambda_0$ 及对应的特征向量 $\alpha$, 矩 ...
- 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八.(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...
- 复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答
六.(本题10分) 设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...
- 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...
- 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答
八.(本题10分) 设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...
- 复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答
七.(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\), \(A^{-1}BA\) 均为对角阵的充分必要条件是 \ ...
- 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答
七.(本题10分) 设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...
随机推荐
- CRT乱码问题
本人在使用CRT过程中遇到乱码问题,经调试发现要把字体调整为"新宋体",编码格式用"UTF-8". 调整字体: Options à Session option ...
- springcloud第二步:发布服务提供者
创建项目service-member Maven依赖 <parent> <groupId>org.springframework.boot</groupId> &l ...
- fastjson JSONObject遍历
private static String getDesc(String jsonStr, String key) { JSONObject jsonObject = JSONObject.parse ...
- hystrix参数使用方法
hystrix+feign+ribbon,但是可能很多人都知道hystrix还有线程隔离,信号量隔离,等等各种参数配置,在这几就记录下hystrix的参数, 一.hystrix参数使用方法 通过注解@ ...
- vghyj
2017*****1012:我是康迪:我的爱好是计算机:我的码云个人主页是:https://gitee.com/kdkdkdkd我的第一个项目地址是:https://gitee.com/kdkdkdk ...
- canal 代码阅读
涉及到有边界队列,无边界队列.poolSize.corePoolSize.maximumPoolSize 三者参数含义 If there are more than corePoolSize but ...
- CVU -fixup
cluvfy(Cluster Verify),简称CVU,是随Oracle集群管理软件一起发布的检查工具. 1.不带fixup grid@WWJD-DB1:/oracle/app/12.2.0/gri ...
- 关于eclipse常用的一些快捷键
Ctrl+Alt+H :查看方法被哪些代码调用了 Ctrl + Shif +O :自动引导类包 Ctrl+Shift+/ : 加上段注释 Ctrl+Shift+\ : 取消段注释 ALT+/ ...
- word_freq
1) 博客开头给出自己的基本信息,格式建议如下: 学号:2017*****7193(保留前4位和后4位,中间用星号代替,避免泄露个人信息): 姓名:刘新飞,用你的真实姓名替代 我的码云仓库地址:[ht ...
- navicat 远程访问mariadb失败,修改配置如下
1.首先配置允许访问的用户,采用授权的方式给用户权限 GRANT ALL PRIVILEGES ON *.* TO 'root'@'%'IDENTIFIED BY '121212' WITH GRAN ...