BZOJ 5093[Lydsy1711月赛]图的价值 线性做法
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里
惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波
幂与第二类斯特林数
$$ x^k=\sum_{j=0}^kj!\binom{x}{j}\begin{Bmatrix}k\\j\end{Bmatrix}$$
$$ \begin{Bmatrix}k\\j\end{Bmatrix}=\frac{1}{j!}\sum_{i=0}^ji^k\binom{j}{i}(-1)^{j-i}$$
以上是两个非常实用的公式
推式子
现在开始推式子
原博文已经推出了我们真正需要求的是$ f(n,k)=\sum\limits_{i=0}^n\binom{n}{i}i^k$
根据上面的公式可以推得
$$
\begin{aligned}
f(n,k) & =\sum_{i=0}^n\binom{n}{i}i^k=\sum_{j=0}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}2^{n-j}\\
& =\sum_{j=0}^k\frac{n!}{(n-j)!}2^{n-j}\frac{1}{j!}\sum_{i=0}^j(-1)^{j-i}\binom{j}{i}i^k\\
&=\sum_{j=0}^k\binom{n}{j}2^{n-j}\sum_{i=0}^j(-1)^{j-i}\binom{j}{i}i^k\\
&=\sum_{i=0}^k\binom{n}{i}i^k\sum_{j=i}^k2^{n-j}(-1)^{j-i}\binom{n-i}{j-i}\\
&=\sum_{i=0}^k\binom{n}{i}i^k2^{n-i}\sum_{j=0}^{k-i}\binom{n-i}{j}(-\frac{1}{2})^j
\end{aligned}
$$
我们需要快速递推出$A(i)=\displaystyle\sum_{j=0}^{k-i}\binom{n-i}{j}(-\frac{1}{2})^j$
再推波式子得
$$
\begin{aligned}
\sum_{j=0}^{k-i}\binom{n-i}{j}(-\frac{1}{2})^j&=\sum_{j=0}^{k-i}\left(\binom{n-i-1}{j}+\binom{n-i-1}{j-1}\right)(-\frac{1}{2})^j\\
&=\sum_{j=1}^{k-i}(-\frac{1}{2})^j\binom{n-i-1}{j-1}+\sum_{j=0}^{k-i}(-\frac{1}{2})^j\binom{n-i-1}{j}\\
&=-\frac{1}{2}\sum_{j=0}^{k-i-1}(-\frac{1}{2})^j\binom{n-i-1}{j}+\sum_{j=0}^{k-i}(-\frac{1}{2})^j\binom{n-i-1}{j}\\
&=\frac{1}{2}\sum_{j=0}^{k-i-1}(-\frac{1}{2})^j\binom{n-i-1}{j}+(-\frac{1}{2})^{k-i}\binom{n-i-1}{k-i}
\end{aligned}
$$
因此$A(i)=\frac{1}{2}A(i+1)+(-\frac{1}{2})^{k-i}\binom{n-i-1}{k-i}$
就假装推完了
大常数代码
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define p 998244353
#define inv2 499122177
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt;
int ksm(int x,int y=p-){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)ans=1ll*ans*x%p;
return ans;
}
int inv[],A[];
int v[],ss[];bool b[];
int main(){
n=read()-;k=read();
inv[]=inv[]=;
v[]=;v[]=(k==);
for(rt i=;i<=k;i++){
if(!b[i])ss[++cnt]=i,v[i]=ksm(i,k);
for(rt j=;i*ss[j]<=k&&j<=cnt;j++){
b[i*ss[j]]=;v[i*ss[j]]=1ll*v[i]*v[ss[j]]%p;
if(i%ss[j]==)break;
}
}
for(rt i=;i<=k;i++)inv[i]=1ll*inv[p%i]*(p-p/i)%p;
int ans=;
if(n<=k){
for(rt i=,c=;i<=n;c=1ll*(n-i)*inv[i+]%p,i++)
ans+=1ll*c*v[i]%p;
cout<<(1ll*ans*(n+)%p*ksm(,(ll)n*(n-)/%(p-))%p+p)%p;
return ;
} A[k]=;
for(rt i=k-,y=-inv2,c=n-i-;i>=;i--,y=1ll*y*-inv2%p){
A[i]=(1ll*A[i+]*inv2%p+1ll*c*y%p)%p;
c=1ll*c*(n-i)%p*inv[k-i+]%p;
} for(rt i=,d=ksm(,n),c=;i<=k&&i<=n;c=1ll*c*(n-i)%p*inv[i+]%p,i++,d=1ll*d*inv2%p)
(ans+=1ll*c*v[i]%p*d%p*A[i]%p)%=p;
cout<<(1ll*ans*(n+)%p*ksm(,(ll)n*(n-)/%(p-))%p+p)%p;
return ;
}
BZOJ 5093[Lydsy1711月赛]图的价值 线性做法的更多相关文章
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- BZOJ 5093: [Lydsy1711月赛]图的价值
第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一 ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- bzoj 5093 [Lydsy1711月赛]图的价值——第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{ ...
- BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...
- 【bzoj5093】 [Lydsy1711月赛]图的价值 组合数+斯特林数+NTT
Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向 ...
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
- bzoj5093:[Lydsy1711月赛]图的价值
题目 首先考虑到这是一张有标号的图,每一个点的地位是相等的,因此我们只需要求出一个点的价值和乘上\(n\)就好了 考虑一个点有多少种情况下度数为\(i\) 显然我们可以让除了这个点的剩下的\(n-1\ ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
随机推荐
- 在windows系统下安装linux虚拟机(VMware)
一.下载Vmware安装包(此处我安装的是VMware-workstation-full-14.1.3) 链接: https://pan.baidu.com/s/12xT1JaA7eheEgFfM-2 ...
- js获取数组中最大值,最小值
遍历方法 var arr =[12,14,34,566,34,98,77] var max = arr[0]; for(var i=0;i<arr.length;i++){ if(max< ...
- 把流的形式转化为Base64
public class Test2 { public static String get() throws IOException { InputStream resourceAsStream = ...
- git常用命令值stash
git stash(git储藏)可用于以下情形: 发现有一个类是多余的,想删掉它又担心以后需要查看它的代码,想保存它但又不想增加一个脏的提交.这时就可以考虑git stash. 使用git的时候,我们 ...
- Vuex 存储||获取后台接口数据
如果你对 Vuex 有一定的了解的话呢,可以继续这一篇的学习了,如果没有的话, 建议先看一看我的上一篇 Vuex基础:地址在下面 Vuex的详解与使用 Vuex刷新数据不丢失 这篇接着上一篇: 这篇将 ...
- 深入了解servlet
一.web项目结构 |- WebRoot : web应用的根目录 |- 静态资源(html+css+js+image+vedio) |- W ...
- python爬取某站上海租房图片
前言 对于一个net开发这爬虫真真的以前没有写过.这段时间开始学习python爬虫,今天周末无聊写了一段代码爬取上海租房图片,其实很简短就是利用爬虫的第三方库Requests与BeautifulSou ...
- python 元组用法
tup1 = ('physics', 'chemistry', 1997, 2000) 元组中的元素值是不允许修改的 序号 方法及描述 1 cmp(tuple1, tuple2)比较两个元组元素. 2 ...
- request+response+jsp+el+jstl
response: 1.设置响应行的状态码: response.setStatus(int sc); 2.设置response缓冲区的编码:response.setCharacterEncoding( ...
- log4j2日志模板
log4j2.xml <?xml version="1.0" encoding="UTF-8"?> <!--设置log4j2的自身log级别为 ...