1. Coulomb 定律, 电场强度

(1) 真空中 $P_1$ 处有电荷 $q_1$, $P$ 处有电荷 $q$, ${\bf r}_1=\vec{P_1P}$, 则 $q$ 所受的力为 $$\bex {\bf F}=\cfrac{1}{4\pi \ve_0} \cfrac{qq_1{\bf r}_1}{r_1^3}, \eex$$ 其中 $\ve_0=8. 85419\times 10^{-2}C^2/(N\cdot m^2)$ 为介电常数.

(2) 由微积分, 真空中点电荷 $q$ 受一连续分布在空间区域 $\Omega$ 中的电荷的作用力为 $$\bex {\bf F}=\cfrac{1}{4\pi\ve_0}\int_\Omega \cfrac{q\rho {\bf r}}{r^3}\rd V, \eex$$ 其中 $\rho$ 为电荷分布的体密度, ${\bf r}$ 为 $q$ 到体积元 $\rd V$ 的矢径, $r=|{\bf r}|$.

(3) 电场是一种空间, 于其中电荷将收到力的作用.

(4) 电场是物质存在的一种形式, 它可以离开电荷而独立存在, 比如变化的磁场产生电场.

(5) 由静电荷产生的电场称为静电场.

(6) 电场强度 ${\bf E}=(E_x,E_y,E_z)$, 是描述电荷在电厂中受力情况的物理量, 用静止的单位正电荷 (试验电荷) 在该点处所受的力来衡量.

(7) 由微积分, 由连续分布在空间区域 $\Omega$ 中电荷产生的电场强度为 $$\bex {\bf E}=\cfrac{1}{4\pi\ve_0}\int_\Omega \cfrac{\rho {\bf r}_{P'P}}{r_{P'P}^3}\rd V_{P'}. \eex$$

2. Gauss 定理

(1) 电场强度 ${\bf E}$ 有曲线积分, 称为电场线.

(2) 习惯上, $|{\bf E}|$ 越大, 电场线越密集, $|{\bf E}|$ 越小, 电场线越稀疏.

(3) 穿过有向曲面 $S$ 的电通量定义为 $$\bex \int_S {\bf E}\cdot{\bf n}\rd S, \eex$$ 其中 ${\bf n}$ 为 $S$ 的法方向.

(4) Gauss 定理的积分形式: 设 $\vGa$ 为一封闭曲面, $Q$ 为 $\vGa$ 内的电荷的代数和, 则有 $$\bex \int_{\vGa}{\bf E}\cdot{\bf n} \rd S=\cfrac{Q}{\ve_0}. \eex$$

证明: 由叠加原理, 仅须读 $Q$ 为点电荷的情形予以证明. 此时, $$\bex {\bf E}=\cfrac{1}{4\pi\ve_0}\cfrac{Q{\bf r}}{r^3}. \eex$$ 于是 $$\beex \bea \int_\vGa {\bf E}\cdot{\bf n}\rd S &=\cfrac{Q}{4\pi\ve_0} \int_\vGa \cfrac{(x-x_0)\rd x+(y-y_0)\rd y+(z-z_0)\rd z}{r^3}\\ &=\cfrac{Q}{4\pi\ve_0} \int_{|P'P|=\ve}\cfrac{(x-x_0)\rd x+(y-y_0)\rd y+(z-z_0)\rd z}{r^3}\quad\sex{Gauss\mbox{ 公式}}\\ &=\cfrac{Q}{4\pi \ve_0}\int_{|P'P|=\ve} \cfrac{{\bf r}\cdot{\bf n}}{r^3}\rd S\quad\sex{{\bf n}=\cfrac{{\bf r}}{r}}\\ &=\cfrac{Q}{4\pi\ve_0} \int_{|P'P|=\ve}\cfrac{1}{r^2}\rd S\\ &=\cfrac{Q}{\ve_0}. \eea \eeex$$

(5) Gauss 定理的微分形式: $$\bex \Div {\bf E}=\cfrac{\rho}{\ve_0}. \eex$$ 证明: $$\bex \cfrac{1}{\ve_0}\int_\Omega \rho \rd V=\cfrac{Q}{\ve_0} =\int_\vGa {\bf E}\cdot{\bf n}\rd S =\int_\Omega \Div {\bf E}\rd S. \eex$$

(6) 由 Gauss 定理的微分形式知静电场是有源场, 每个单位正电荷发出 $\cfrac{1}{\ve_0}$ 的电通量, 每个单位负电荷敛入 $\cfrac{1}{\ve_0}$ 的电通量.

(7) 静电场是无旋的: $\rot {\bf E}={\bf 0}$. 证明: $$\beex \bea \int_S \rot {\bf E}\cdot\n\rd S &=\int_l{\bf E}\cdot\rd {\bf l}\\ &=\cfrac{q}{4\pi\ve_0}\int_l\cfrac{{\bf r}}{r^3}\cdot \rd {\bf l}\\ &=\cfrac{q}{4\pi \ve_0} \int_l \cfrac{1}{r^3}\sez{(x-x_0)\rd x+(y-y_0)\rd y+(z-z_0)\rd z}\\ &=\cfrac{q}{4\pi \ve_0}\int_l\cfrac{1}{r^2}\rd r\\ &=-\cfrac{q}{4\pi \ve_0}\int_l\rd \cfrac{1}{r}\\ &=0. \eea \eeex$$

(8) 静电场的势 $\phi$: $$\bex \rot{\bf E}={\bf 0}\ra {\bf E}=-\n \phi. \eex$$ 如此, 电场线指向电势降低的方向, 而 $\phi$ 可以表示为 $$\bex \phi(x,y,z)=-\int_{(x_0,y_0,z_0)}^{(x,y,z)} {\bf E}\cdot\rd {\bf l}+\phi_0. \eex$$

(9) 位于原点、电量为 $Q$ 的点电荷产生的静电场的电势为 $$\beex \bea \phi(x,y,z)&=-\int_\infty^{(x,y,z)}\cfrac{1}{4\pi \ve_0}\cfrac{Q{\bf r}}{r^3}\rd {\bf l}\\ &=\int_{(x,y,z)}^\infty \cfrac{1}{4\pi\ve_0} \cfrac{Q}{r^3}(x\rd x+y\rd y+z\rd z)\\ &=\cfrac{Q}{4\pi\ve_0}\int_{\sqrt{x^2+y^2+z^2}}^\infty \cfrac{1}{r^2}\rd r\\ &=\cfrac{1}{4\pi\ve_0}\cfrac{Q}{\sqrt{x^2+y^2+z^2}}. \eea \eeex$$

(10) 由微积分, 由连续分布在空间区域 $\Omega$ 中的电荷产生的静电场的电势为 $$\bex \phi(x,y,z)=\cfrac{1}{4\pi\ve_0}\int_\Omega \cfrac{\rho(P')}{r_{P'P}}\rd V_{P'}. \eex$$ (11) 综上, 静电场是有源 (散度为 $\rho/\ve_0$) 无旋场. [一般情形, $\Div{\bf E}=\rho/\ve_0$ 成立, 但 $\rot {\bf E}={\bf 0}$ 不再成立].

[物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度的更多相关文章

  1. [物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度

    1. 电流密度, 电荷守恒定律 (1) 电荷的定向移动形成电流. (2) 电流密度 ${\bf j}$, 是描述导体内一点在某一时刻电流流动情况的物理量, 用单位时间内通过垂直于电流方向的单位面积的电 ...

  2. [物理学与PDEs]第1章第2节 预备知识 2.3 Faraday 电磁感应定律

    1.  Faraday 电磁感应定律: 设 $l$ 为任一闭曲线, 则 $$\bex \oint_l{\bf E}\cdot\rd {\bf l} =-\int_S \cfrac{\p {\bf B} ...

  3. [物理学与PDEs]第1章 电动力学

    [物理学与PDEs]第1章第1节 引言 [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度 [物理学与PDEs]第1章第2节 预备知识 2.2 Ampere ...

  4. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  5. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  6. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  7. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  8. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  9. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

随机推荐

  1. linux 配置vim(vimrc)

    打开终端:ctrl+alt+t 进入vim文件:cd /etc/vim 打开vimrc文件:sudo gedit vimrc 然后在行末if语句前加上下面的内容,"  这个符号为注释,后面内 ...

  2. Python排序算法——冒泡排序

    有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10786904.html 一.冒泡排序(Bubb ...

  3. HttpServletRequest get

    假设客户端请求的地址:http://localhost:8082/TestReq/MyServlet/username=李雷&age=20 request.getRequestURL http ...

  4. BugPhobia开发篇章:Beta阶段第X次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第十次Scrum Meeting 敏捷开发起始时间 2015/12/29 00:00 A.M. 敏捷开发终止时间 2016/01/01 23 ...

  5. Day4 Numerical simulation of optical wave propagation之数字傅里叶变换

    标量衍射理论是波动光学模拟的物理基础.这一理论基础的结果是将电磁波在真空中的传播作为线性系统进行处理. 对于单色波,系统观察平面的电场矢量是源平面电场矢量和自由空间脉冲响应的卷积. 因此,线性系统理论 ...

  6. sql 日常使用记录

    sql 某个字段在哪些表中存在: select sysobjects.name from syscolumns inner join sysobjects on syscolumns.id = sys ...

  7. LODOP批量打印多页模版进行维护

    批量打印的时候,可以循环多任务,也可以循环多页,很多的时候也可以分页分任务,分组打印.如果是一个任务里的多页相同的模版,一个任务中会有很多打印项,这些打印项在每页中的位置是相同的,如果要调整,调整结果 ...

  8. springboot整合redis(注解形式)

    springboot整合redis(注解形式) 准备工作 springboot通常整合redis,采用的是RedisTemplate的形式,除了这种形式以外,还有另外一种形式去整合,即采用spring ...

  9. Linux 学习 (九) 网络基础

    Linux网络管理 学习笔记 ISO/OSI 七层模型 ISO :国际标准化组织 OSI :开放系统互联模型 应用层.表示层.会话层服务于用户 传输层.网络层.数据链路层.物理层服务于实际数据传输 帧 ...

  10. Linux 学习 (八) Shell

    Linux达人养成计划 I 学习笔记 Shell 是什么: Shell 是一个命令解释器 Shell 还是一个功能相当强大的编程语言,易编写,易调试,灵活性较强 Shell 的分类: Bourne S ...