CF757E Bash Plays with Functions

题解
q<=1e6,询问非常多。而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询。
离线也是没有什么意义的,因为必须递推。
先翻译$f_0(n)$
$f_0(n)=\sum_d|n[(d,\frac{n}{d})=1]$
一个数的约数和约数的另一半互质,那么,必须意味着,对于n的每个质因子,要么全在d,要么全在n/d否则就不互质了,就是0
对于互质时,每个质因子有两种选择情况,
所以,f0就是$2^m$其中,m是n的质因子种类数。
然后还要处理fr的递推式。

发现,还是和n的约数有关,反过来考虑每个约数的贡献,发现每个约数会被计算两次,u,v各一次
而还要除以2,正好消掉
那么,其实$f_r(n)=\sum_{d|n}f_{r-1}(d)$
这个是什么呢?$f_r(n)=f_{r-1}*1$($*$表示卷积)
$f_0$是积性函数显然,
而卷积两侧是积性函数,那么卷积之后也是积性函数的。
所以,递推过去,$f_r$都是积性函数了。
所以,处理$f_r$可以把每个质因子分开考虑。
$f_r(n)=\Pi_{i=1}^k\space f_{r-1}(p_i^{q_i})$
$f_r(p_1^{q_1})=\sum_{d|{p_1^{q_1}}}f_{r-1}(d)=\sum_{k=1}^{q_1}f_{r-1}(p_1^{k})$
可以发现,如果递推到$f_0$的话,那么,就和质因子p1是什么,没有任何关系了。
所以,之后的取值,和p1是什么质因子,也没有关系。
只和p1的次数有关。
所以可以dp[i][j]第i层,次数为j的$f_i(j)$的值。
前缀和优化一下即可。
但是对于1e6次输入的数,怎么快速质因数分解呢?
假装你要线性筛素数,然后你可以顺便筛出mindiv(一个数的最小质因子)
然后,可以每次除掉mindiv,记录一下这个mindiv的次数。
即可利用mindiv,logn质因数分解
代码:
#include<bits/stdc++.h>
#define numb (ch^'0')
#define ri register int
using namespace std;
typedef long long ll;
const int N=+;
const int mod=1e9+;
int q,r,n;
int pri[N],cnt;
int mindiv[N];
ll f[N][],sum[];
bool vis[N];
void rd(int &x){
x=;char ch;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=(x<<)+(x<<)+numb);
}
void sieve(){
mindiv[]=;//warning!!
for(int i=;i<=N-;i++){
if(!vis[i]){
pri[++cnt]=i;
mindiv[i]=i;
}
for(int j=;j<=cnt;j++){
if(pri[j]*i>N-) break;
vis[pri[j]*i]=;
mindiv[pri[j]*i]=pri[j];
if(i%pri[j]==) break;
}
}
}
int main(){
sieve();
f[][]=;
sum[]=;
for(int i=;i<=;i++) f[][i]=,sum[i]=sum[i-]+f[][i];
for(ri i=;i<=N-;i++){
for(int j=;j<=;j++){
f[i][j]=sum[j];
sum[j]=;
if(j)sum[j]=sum[j-];
(sum[j]+=f[i][j])%=mod;
}
}
int t;
rd(t);
while(t--){
rd(r),rd(n);
ll ans=;
while(n!=){
ll div=mindiv[n];
int cnt=;
while(mindiv[n]==div) cnt++,n/=mindiv[n];
(ans*=f[r][cnt])%=mod;
}
printf("%lld\n",ans);
}
return ;
} /*
Author: *Miracle*
Date: 2018/10/3 22:15:15
*/
总结:
1.对于1e6的询问,必然要考虑探究性质,O(1)处理询问。
2.积性函数的证明:
①从实际意义考虑,如$f_0$
②直接理性证明,如$f_r$
这个是利用了卷积的性质
有时要考虑的是分开质因子能不能处理。
CF757E Bash Plays with Functions的更多相关文章
- Codeforces 757 E Bash Plays with Functions
Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...
- Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...
- codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)
http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...
- Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...
- CF 757E Bash Plays with Functions——积性函数+dp+质因数分解
题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...
- CF 757 E Bash Plays with Functions —— 积性函数与质因数分解
题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...
- 【codeforces 757E】Bash Plays with Functions
[题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...
- [Codeforces 757E] Bash Plays with Functions (数论)
题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解 ...
- Bash Plays with Functions CodeForces - 757E (积性函数dp)
大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...
随机推荐
- T-SQL_select语句详解
select语句执行的过程: 先看查询内容 ==>where条件 ==>[分组条件] ==>[分组搜索条件] ==>内容输出 ==>[是否排序] SQL中SELECT语句 ...
- echarts中legend如何换行
lengend data数据中若存在'',则表示换行,用''切割.
- #021 Java复习第一天
上学期在慧河工作室学习简单过java到面向对象就停止了 现在有事情又要用到java发现全忘了..... 快速复习一下 网课PPT 计算机: 硬件 + 软件 主要硬件: cpu :cpu是一个计算机的运 ...
- 码农人生——从未学过Android如何开发Android App 案例讲解-第002期案例
标题有点晃眼,本次分享是002期博文的实践故事,不会有任何代码.也不会教别人android 如何开发,类似博文已经有大批大批,而且还会有陆陆续续的人写,我写的文章,主要是经验之谈,希望总结出的一些方法 ...
- 跨域 - 自定义 jsonp实现跨域
问题:在现代浏览器中默认是不允许跨域. 办法:通过jsonp实现跨域 在js中,我们直接用XMLHttpRequest请求不同域上的数据时,是不可以的.但是,在页面上引入不同域上的js脚本文件却是 ...
- Extending the Yahoo! Streaming Benchmark
could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...
- Node.js完整的响应html页面(包括css,js文件)
主要思想就是任何一个静态文件也应该做响应,一个获取静态文件都应当请求来处理,这是主要思想. 同时要注意两点.第一,对于不同的文件类型,比如html,css,js,请求头里面的文件类型需要根据不同的文件 ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- Windows将自己的代码发布到Github上
1.在GitHub上创建一个repository 2.在自己的电脑上选择工作的文件夹使用Git Bash clone刚刚创建的repository 3.此时本地git应该已经连接了GitHub,如果没 ...
- K8S集群技术
1.快速部署K8S环境 k8s-m :10.0.0.11 k8s-n1 :10.0.0.12 k8s-n2 :10.0.0.13 2.所有节点安装docker环境及依赖 2.1 上传docke ...