题解

q<=1e6,询问非常多。而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询。

离线也是没有什么意义的,因为必须递推。

先翻译$f_0(n)$

$f_0(n)=\sum_d|n[(d,\frac{n}{d})=1]$

一个数的约数和约数的另一半互质,那么,必须意味着,对于n的每个质因子,要么全在d,要么全在n/d否则就不互质了,就是0

对于互质时,每个质因子有两种选择情况,

所以,f0就是$2^m$其中,m是n的质因子种类数。

然后还要处理fr的递推式。

发现,还是和n的约数有关,反过来考虑每个约数的贡献,发现每个约数会被计算两次,u,v各一次

而还要除以2,正好消掉

那么,其实$f_r(n)=\sum_{d|n}f_{r-1}(d)$

这个是什么呢?$f_r(n)=f_{r-1}*1$($*$表示卷积)

$f_0$是积性函数显然,

而卷积两侧是积性函数,那么卷积之后也是积性函数的。

所以,递推过去,$f_r$都是积性函数了。

所以,处理$f_r$可以把每个质因子分开考虑。

$f_r(n)=\Pi_{i=1}^k\space f_{r-1}(p_i^{q_i})$

$f_r(p_1^{q_1})=\sum_{d|{p_1^{q_1}}}f_{r-1}(d)=\sum_{k=1}^{q_1}f_{r-1}(p_1^{k})$

可以发现,如果递推到$f_0$的话,那么,就和质因子p1是什么,没有任何关系了。

所以,之后的取值,和p1是什么质因子,也没有关系。

只和p1的次数有关。

所以可以dp[i][j]第i层,次数为j的$f_i(j)$的值。

前缀和优化一下即可。

但是对于1e6次输入的数,怎么快速质因数分解呢?

假装你要线性筛素数,然后你可以顺便筛出mindiv(一个数的最小质因子)

然后,可以每次除掉mindiv,记录一下这个mindiv的次数。

即可利用mindiv,logn质因数分解

代码:

#include<bits/stdc++.h>
#define numb (ch^'0')
#define ri register int
using namespace std;
typedef long long ll;
const int N=+;
const int mod=1e9+;
int q,r,n;
int pri[N],cnt;
int mindiv[N];
ll f[N][],sum[];
bool vis[N];
void rd(int &x){
x=;char ch;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=(x<<)+(x<<)+numb);
}
void sieve(){
mindiv[]=;//warning!!
for(int i=;i<=N-;i++){
if(!vis[i]){
pri[++cnt]=i;
mindiv[i]=i;
}
for(int j=;j<=cnt;j++){
if(pri[j]*i>N-) break;
vis[pri[j]*i]=;
mindiv[pri[j]*i]=pri[j];
if(i%pri[j]==) break;
}
}
}
int main(){
sieve();
f[][]=;
sum[]=;
for(int i=;i<=;i++) f[][i]=,sum[i]=sum[i-]+f[][i];
for(ri i=;i<=N-;i++){
for(int j=;j<=;j++){
f[i][j]=sum[j];
sum[j]=;
if(j)sum[j]=sum[j-];
(sum[j]+=f[i][j])%=mod;
}
}
int t;
rd(t);
while(t--){
rd(r),rd(n);
ll ans=;
while(n!=){
ll div=mindiv[n];
int cnt=;
while(mindiv[n]==div) cnt++,n/=mindiv[n];
(ans*=f[r][cnt])%=mod;
}
printf("%lld\n",ans);
}
return ;
} /*
Author: *Miracle*
Date: 2018/10/3 22:15:15
*/

总结:

1.对于1e6的询问,必然要考虑探究性质,O(1)处理询问。

2.积性函数的证明:

①从实际意义考虑,如$f_0$

②直接理性证明,如$f_r$

这个是利用了卷积的性质

有时要考虑的是分开质因子能不能处理。

CF757E Bash Plays with Functions的更多相关文章

  1. Codeforces 757 E Bash Plays with Functions

    Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...

  2. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

  3. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  4. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  5. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  6. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

  7. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  8. [Codeforces 757E] Bash Plays with Functions (数论)

    题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解 ...

  9. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

随机推荐

  1. T-SQL_select语句详解

    select语句执行的过程: 先看查询内容 ==>where条件 ==>[分组条件] ==>[分组搜索条件] ==>内容输出 ==>[是否排序] SQL中SELECT语句 ...

  2. echarts中legend如何换行

    lengend data数据中若存在'',则表示换行,用''切割.

  3. #021 Java复习第一天

    上学期在慧河工作室学习简单过java到面向对象就停止了 现在有事情又要用到java发现全忘了..... 快速复习一下 网课PPT 计算机: 硬件 + 软件 主要硬件: cpu :cpu是一个计算机的运 ...

  4. 码农人生——从未学过Android如何开发Android App 案例讲解-第002期案例

    标题有点晃眼,本次分享是002期博文的实践故事,不会有任何代码.也不会教别人android 如何开发,类似博文已经有大批大批,而且还会有陆陆续续的人写,我写的文章,主要是经验之谈,希望总结出的一些方法 ...

  5. 跨域 - 自定义 jsonp实现跨域

    问题:在现代浏览器中默认是不允许跨域. 办法:通过jsonp实现跨域   在js中,我们直接用XMLHttpRequest请求不同域上的数据时,是不可以的.但是,在页面上引入不同域上的js脚本文件却是 ...

  6. Extending the Yahoo! Streaming Benchmark

    could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...

  7. Node.js完整的响应html页面(包括css,js文件)

    主要思想就是任何一个静态文件也应该做响应,一个获取静态文件都应当请求来处理,这是主要思想. 同时要注意两点.第一,对于不同的文件类型,比如html,css,js,请求头里面的文件类型需要根据不同的文件 ...

  8. 文本分类实战(九)—— ELMO 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  9. Windows将自己的代码发布到Github上

    1.在GitHub上创建一个repository 2.在自己的电脑上选择工作的文件夹使用Git Bash clone刚刚创建的repository 3.此时本地git应该已经连接了GitHub,如果没 ...

  10. K8S集群技术

    1.快速部署K8S环境 k8s-m :10.0.0.11   k8s-n1 :10.0.0.12   k8s-n2 :10.0.0.13 2.所有节点安装docker环境及依赖 2.1 上传docke ...