题解

q<=1e6,询问非常多。而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询。

离线也是没有什么意义的,因为必须递推。

先翻译$f_0(n)$

$f_0(n)=\sum_d|n[(d,\frac{n}{d})=1]$

一个数的约数和约数的另一半互质,那么,必须意味着,对于n的每个质因子,要么全在d,要么全在n/d否则就不互质了,就是0

对于互质时,每个质因子有两种选择情况,

所以,f0就是$2^m$其中,m是n的质因子种类数。

然后还要处理fr的递推式。

发现,还是和n的约数有关,反过来考虑每个约数的贡献,发现每个约数会被计算两次,u,v各一次

而还要除以2,正好消掉

那么,其实$f_r(n)=\sum_{d|n}f_{r-1}(d)$

这个是什么呢?$f_r(n)=f_{r-1}*1$($*$表示卷积)

$f_0$是积性函数显然,

而卷积两侧是积性函数,那么卷积之后也是积性函数的。

所以,递推过去,$f_r$都是积性函数了。

所以,处理$f_r$可以把每个质因子分开考虑。

$f_r(n)=\Pi_{i=1}^k\space f_{r-1}(p_i^{q_i})$

$f_r(p_1^{q_1})=\sum_{d|{p_1^{q_1}}}f_{r-1}(d)=\sum_{k=1}^{q_1}f_{r-1}(p_1^{k})$

可以发现,如果递推到$f_0$的话,那么,就和质因子p1是什么,没有任何关系了。

所以,之后的取值,和p1是什么质因子,也没有关系。

只和p1的次数有关。

所以可以dp[i][j]第i层,次数为j的$f_i(j)$的值。

前缀和优化一下即可。

但是对于1e6次输入的数,怎么快速质因数分解呢?

假装你要线性筛素数,然后你可以顺便筛出mindiv(一个数的最小质因子)

然后,可以每次除掉mindiv,记录一下这个mindiv的次数。

即可利用mindiv,logn质因数分解

代码:

#include<bits/stdc++.h>
#define numb (ch^'0')
#define ri register int
using namespace std;
typedef long long ll;
const int N=+;
const int mod=1e9+;
int q,r,n;
int pri[N],cnt;
int mindiv[N];
ll f[N][],sum[];
bool vis[N];
void rd(int &x){
x=;char ch;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=(x<<)+(x<<)+numb);
}
void sieve(){
mindiv[]=;//warning!!
for(int i=;i<=N-;i++){
if(!vis[i]){
pri[++cnt]=i;
mindiv[i]=i;
}
for(int j=;j<=cnt;j++){
if(pri[j]*i>N-) break;
vis[pri[j]*i]=;
mindiv[pri[j]*i]=pri[j];
if(i%pri[j]==) break;
}
}
}
int main(){
sieve();
f[][]=;
sum[]=;
for(int i=;i<=;i++) f[][i]=,sum[i]=sum[i-]+f[][i];
for(ri i=;i<=N-;i++){
for(int j=;j<=;j++){
f[i][j]=sum[j];
sum[j]=;
if(j)sum[j]=sum[j-];
(sum[j]+=f[i][j])%=mod;
}
}
int t;
rd(t);
while(t--){
rd(r),rd(n);
ll ans=;
while(n!=){
ll div=mindiv[n];
int cnt=;
while(mindiv[n]==div) cnt++,n/=mindiv[n];
(ans*=f[r][cnt])%=mod;
}
printf("%lld\n",ans);
}
return ;
} /*
Author: *Miracle*
Date: 2018/10/3 22:15:15
*/

总结:

1.对于1e6的询问,必然要考虑探究性质,O(1)处理询问。

2.积性函数的证明:

①从实际意义考虑,如$f_0$

②直接理性证明,如$f_r$

这个是利用了卷积的性质

有时要考虑的是分开质因子能不能处理。

CF757E Bash Plays with Functions的更多相关文章

  1. Codeforces 757 E Bash Plays with Functions

    Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...

  2. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

  3. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  4. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  5. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  6. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

  7. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  8. [Codeforces 757E] Bash Plays with Functions (数论)

    题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解 ...

  9. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

随机推荐

  1. Python第十一天 异常处理 glob模块和shlex模块 打开外部程序和subprocess模块 subprocess类 Pipe管道 operator模块 sorted函数 os模块 hashlib模块 platform模块 csv模块

    Python第十一天    异常处理  glob模块和shlex模块    打开外部程序和subprocess模块  subprocess类  Pipe管道  operator模块   sorted函 ...

  2. Swift JSON字符串和字典以及数组的互转

    1.JSONString转换为字典 // JSONString转换为字典 func getDictionaryFromJSONString(jsonString:String) ->NSDict ...

  3. 局部敏感哈希(LSH)之simhash和minhash

    minhash 1. 把文档A分词形成分词向量L 2. 使用K个hash函数,然后每个hash将L里面的分词分别进行hash,然后得到K个被hash过的集合 3. 分别得到K个集合中的最小hash,然 ...

  4. 为Arch Linux安装搜狗输入法

    我们在使用电脑的时候很多时候需要输入中文,这个时候如果没有一个中文输入法那么就是一件非常尴尬的事情了.我门现在开始在我们的archlinux来安装sougou输入法 1.我们需要配置我们的源 arch ...

  5. Html 解决数字和字母不换行

    在html页面中,如果是数字或者字母显示的话,默认是不换行的.一般显示成这种: 解决方法确实也很简单,设置td或者div为: style="word-break:break-all;&quo ...

  6. 在android中进行单元测试的步骤

    若不知道怎么配上面两个参数 

  7. 回去试idea

    https://blog.csdn.net/s_eal/article/details/81486472?utm_source=blogxgwz0

  8. kubernetes-整体概述和架构

    1.Kubernetes是什么 Kubernetes是一个轻便的和可扩展的开源平台,用于管理容器化应用和服务.通过Kubernetes能够进行应用的自动化部署和扩缩容.在Kubernetes中,会将组 ...

  9. Nginx 的 access log 如何以 json 形式记录?

    Nginx 的 access log 默认是以空格分隔的字符串形式记录的,格式如下 log_format proxy '[$time_local] $remote_addr ' '$protocol ...

  10. 【Git】+ 新建+删除+上传+覆盖

    上传代码时邮箱格式不符合:https://blog.csdn.net/u012558695/article/details/64921922 在本地新建一个分支: git branch newBran ...