简单的索引值

import numpy as np
a = np.arange(3, 15).reshape(3, 4)
print("a=")
print(a) print("第2行的数据:", a[2])
print("第2行第3列的数据:", a[2][3])

输出为:

a=
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
第2行的数据: [11 12 13 14]
第2行第3列的数据: 14

对于获取第2行第3列的数据,我们还可以用如下的方式来获取:

print("第2行第3列的数据:", a[2, 3])

数据切片

用冒号索引可以对数据进行切片。

import numpy as np
a = np.arange(3, 15).reshape(3, 4)
print("a=")
print(a) print("第2行所有数:", a[2, :])

输出为:

a=
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
第2行所有数: [11 12 13 14]

上面用冒号来对数据选择进行了占位。

如果我们想要获得第1列的所有数:

import numpy as np
a = np.arange(3, 15).reshape(3, 4)
print("a=")
print(a) print("第1列所有数:", a[:, 1])

输出为第1列的所有数:

a=
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
第1列所有数: [ 4 8 12]

获取第1行从第2列到第4列的值:

import numpy as np
a = np.arange(3, 15).reshape(3, 4)
print("a=")
print(a) print("第1行从第2列到第4列的值:", a[1, 2:4])

输出为:

a=
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
第1行从第1列到第2列的值: [ 9 10]

把数据变平

把数据变平的意思是:如果是多维数组,则把数组中的每个元素平铺开来,变成一维数据,这样便于用索引值进行访问。

例如:

import numpy as np
a = np.arange(3, 15).reshape(3, 4)
print("a=")
print(a)
print("flatten=", a.flatten())

输出:

a=
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
flatten= [ 3 4 5 6 7 8 9 10 11 12 13 14]

也可以用a.flat返回一个迭代器来变量其中的元素:

import numpy as np
a = np.arange(3, 15).reshape(3, 4)
print("a=")
print(a) for v in a.flat:
print(v, end=',')

输出为:

a=
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
3,4,5,6,7,8,9,10,11,12,13,14,

numpy的索引-【老鱼学numpy】的更多相关文章

  1. python开发环境搭建及numpy基本属性-【老鱼学numpy】

    目的 本节我们将介绍如何搭建python的开发环境以及numpy的基本属性,这样可以检验我们的numpy是否安装正确了. python开发环境的搭建 工欲善其事必先利其器,我用得比较顺手的是Intel ...

  2. numpy安装-【老鱼学numpy】

    要玩numpy,就得要安装numpy. 安装python 3.6.3 64位 首先需要安装python,安装python的具体方法这里就不细讲了. 可以到官网上下载相应的python版本就可以了,目前 ...

  3. numpy有什么用【老鱼学numpy】

    老鱼为了跟上时代潮流,也开始入门人工智能.机器学习了,瞬时觉得自己有点高大上了:). 从机器学习的实用系列出发,我们会以numpy => pandas => scikit-learn =& ...

  4. numpy的基础运算-【老鱼学numpy】

    概述 本节主要讲解numpy数组的加减乘除四则运算. np.array()返回的是numpy的数组,官方称为:ndarray,也就是N维数组对象(矩阵),N-dimensional array obj ...

  5. numpy创建array【老鱼学numpy】

    在上一篇文章中,我们已经看到了如何通过numpy创建numpy中的数组,这里再重复一下: import numpy as np # 数组 a = [[1, 2, 3], [4, 5, 6]] prin ...

  6. numpy的基础运算2-【老鱼学numpy】

    numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. ...

  7. numpy的array合并-【老鱼学numpy】

    概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...

  8. numpy array分割-【老鱼学numpy】

    有合并,就有分割. 本节主要讲述如何通过numpy对数组进行横向/纵向分割. 横向/纵向分割数组 首先创建一个6行4列的数组,然后我们对此数组按照横向进行切割,分成3块,这样每块应该有2行,见例子: ...

  9. numpy array的复制-【老鱼学numpy】

    对象的引用 看例子: a = np.array([0, 1, 2, 3]) b = a a[0] = 5 print("b=", b) # 判断a和b是否是同样的地址 print( ...

随机推荐

  1. input按钮使用方法

  2. POJChallengeRound2 Guideposts 【单位根反演】【快速幂】

    题目分析: 这题的目标是求$$ \sum_{i \in [0,n),k \mid i} \binom{n}{i}G^i $$ 这个形式很像单位根反演. 单位根反演一般用于求:$ \sum_{i \in ...

  3. [Coci2015]Divljak

    题目描述  Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  4. 深入理解JVM(2)——运行时数据区

    1.运行时数据区 1.1.程序计数器 记录当前线程正在执行的字节码指令的地址,如果正在执行的是 Native 方法,这个计数器值则为空. 1.2.虚拟机栈 每个 Java 方法在执行的同时会创建一个栈 ...

  5. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  6. 值得推荐的C/C++框架和库 (真的很强大) c

    http://m.blog.csdn.net/mfcing/article/details/49001887 值得推荐的C/C++框架和库 (真的很强大) 发表于2015/10/9 21:13:14 ...

  7. 继续沿用旧的网络访问模式Apache HTTP 客户端,防止Android9闪退

    注意位置,在application 节点里面.

  8. python6-深浅拷贝 元组类型 字典类型 集合类型

    一,深浅拷贝 (一) 值拷贝:应用场景最多 案例:1.ls = [1, 'abc', [10]]    ls1 = ls     # :ls1直接将ls中存放的地址拿过来#  :    ls内部的值发 ...

  9. Java NIO系列教程(一) Java NIO 概述

    <I/O模型之四:Java 浅析I/O模型> 一.阻塞IO与非阻塞IO 阻塞IO: 通常在进行同步I/O操作时,如果读取数据,代码会阻塞直至有 可供读取的数据.同样,写入调用将会阻塞直至数 ...

  10. 尝试去读SQLMAP源码(一)

    本人python 小菜比 一枚.拜读业界典范~~ 阅读sqlmap 的版本是1.1.6,目前应该是最新版. sqlmap.py 脚本中 72~83 def modulePath(): "&q ...