【CF765F】Souvenirs 主席树
【CF765F】Souvenirs
题意:给你一个长度为n的序列{ai},有m个询问,每次询问给出l,r,问在所有$l\le x < y\le r$中,$|a_x-a_y|$的最小值是多少。
$n\le 10^5,m\le 3\times 10^5,a_i\le 10^9$
题解:网上的标程都是在线段树上搞一搞就完事了,但是我怎么看都觉得是$O(n\log^3n)$的。看官方题解,里面也没写具体做法。于是我一脸懵逼的情况下用了主席树来维护,起码保证了$O(n\log^2n)$的复杂度。(应该是做麻烦了)
说做法吧。我们先只考虑$j<i,a_j>a_i$的情况,然后反过来再做一遍。首先比较暴力的思路就是先将询问离线,按右端点排序,然后枚举右端点。当我们扫到一个右端点i的时候,先找到i左边第一个比它大的数j,用$a_j-a_i$更新j左边的答案,然后不断找到j左边,比$a_j$小,比$a_i$大的j',重复此步骤做下去。
而一个比较重要的性质就是我们找到的j'只有在满足$a_{j'}-a_i<a_j-a_{j'}$的情况下才是有意义的(否则就用$a_j-a_{j'}$做答案了),所以每次我们的差都会减半,所需次数为log次。如果用树状数组更新答案的话复杂度就是$O(n\log n\log a_i)$的了。
但是怎么找到下一个$j'$呢?我比较菜所以用的主席树。
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
int n,m,N,top,pre,tot;
const int maxn=100010;
int v[maxn],st[maxn],sn[maxn],ans[maxn*3],p[maxn],rk[maxn],ref[maxn],rt[maxn];
struct node
{
int x,org;
node() {}
node(int a,int b) {x=a,org=b;}
};
vector<node> q[maxn];
vector<node>::iterator it;
int val[maxn<<2];
struct sag
{
int ls,rs,siz;
}s[maxn*20];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
bool cmp(const int &a,const int &b) {return v[a]<v[b];}
inline void updata(int x,int val)
{
for(int i=x;i;i-=i&-i) sn[i]=min(sn[i],val);
}
inline int query(int x)
{
int ret=1<<30;
for(int i=x;i<=n;i+=i&-i) ret=min(ret,sn[i]);
return ret;
}
inline void insert(int x,int &y,int l,int r,int a)
{
y=++tot,s[y].ls=s[x].ls,s[y].rs=s[x].rs,s[y].siz=s[x].siz+1;
if(l==r) return ;
int mid=(l+r)>>1;
if(a<=mid) insert(s[x].ls,s[y].ls,l,mid,a);
else insert(s[x].rs,s[y].rs,mid+1,r,a);
}
inline int getrank(int x,int y,int l,int r,int a)
{
if(l==r) return s[y].siz-s[x].siz;
int mid=(l+r)>>1;
if(a<=mid) return getrank(s[x].ls,s[y].ls,l,mid,a);
return s[s[y].ls].siz-s[s[x].ls].siz+getrank(s[x].rs,s[y].rs,mid+1,r,a);
}
inline int find(int x,int y,int l,int r,int a)
{
if(l==r) return l;
int mid=(l+r)>>1,t=s[s[y].ls].siz-s[s[x].ls].siz;
if(a<=t) return find(s[x].ls,s[y].ls,l,mid,a);
return find(s[x].rs,s[y].rs,mid+1,r,a-t);
}
void work()
{
int i,j,t,last;
for(i=1;i<=n;i++) p[i]=i;
sort(p+1,p+n+1,cmp);
for(N=0,i=1;i<=n;i++)
{
if(i==1||v[p[i]]>v[p[i-1]]) ref[++N]=v[p[i]];
rk[p[i]]=N;
}
ref[0]=-1<<30,ref[N+1]=1<<30;
tot=0;
for(i=1;i<=n;i++) insert(rt[rk[p[i-1]]],rt[rk[p[i]]],1,n,p[i]);
memset(sn,0x3f,sizeof(sn));
for(st[top=0]=0,i=1;i<=n;i++)
{
while(top&&rk[st[top]]<rk[i]) top--;
last=st[top];
while(last)
{
updata(last,v[last]-v[i]);
if(rk[last]==rk[i]) break;
pre=0;
j=upper_bound(ref+1,ref+N+1,(v[last]+v[i])>>1)-ref-1;
if(ref[j]<v[i]) break;
t=getrank(rt[rk[i]-1],rt[j],1,n,i);
if(t==1) break;
last=find(rt[rk[i]-1],rt[j],1,n,t-1);
}
for(it=q[i].begin();it!=q[i].end();it++) ans[(*it).org]=min(ans[(*it).org],query((*it).x));
st[++top]=i;
}
}
int main()
{
n=rd();
int i,a,b;
for(i=1;i<=n;i++) v[i]=rd();
m=rd();
memset(ans,0x3f,sizeof(ans));
for(i=1;i<=m;i++) a=rd(),b=rd(),q[b].push_back(node(a,i));
work();
for(i=1;i<=n;i++) v[i]=-v[i];
work();
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}//3 1 1 1 1 1 2
【CF765F】Souvenirs 主席树的更多相关文章
- Codeforces.765F.Souvenirs(主席树)
题目链接 看题解觉得非常眼熟,总感觉做过非常非常类似的题啊,就是想不起来=v=. 似乎是这道...也好像不是. \(Description\) 给定长为\(n\)的序列\(A_i\).\(m\)次询问 ...
- CF765F Souvenirs
CF765F Souvenirs [CF765F]Souvenirs 主席树 - CQzhangyu - 博客园 其实不用主席树 感觉像是离线问题 但是不能支持差分.分治又处理不了 考虑按照右端点排序 ...
- Codeforces 765F Souvenirs 线段树 + 主席树 (看题解)
Souvenirs 我们将询问离线, 我们从左往右加元素, 如果当前的位置为 i ,用一棵线段树保存区间[x, i]的答案, 每次更新完, 遍历R位于 i 的询问更新答案. 我们先考虑最暴力的做法, ...
- CF765F Souvenirs 解题报告
CF765F Souvenirs 题意翻译 给出\(n(2 \le n \le 10^5 )\) ,一个长为\(n\)的序列\(a(0 \le a_i \le 10^9 )\). 给出\(m(1\le ...
- bzoj3207--Hash+主席树
题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...
- bzoj1901--树状数组套主席树
树状数组套主席树模板题... 题目大意: 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[ ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- BZOJ 1146: [CTSC2008]网络管理Network [树上带修改主席树]
1146: [CTSC2008]网络管理Network Time Limit: 50 Sec Memory Limit: 162 MBSubmit: 3522 Solved: 1041[Submi ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
随机推荐
- Java之函数式接口
函数式接口 概述:接口中只有一个抽象方法 下面介绍的可能很抽象,理解不了,至少在我看来单独的这几个借口是没有用的,跟最下面说的 Stream流一起用才会有效果 函数式接口,即适用于函数式编程场景的接口 ...
- css流式布局
elem{ width:1160px;/*流式布局的总宽度*/ column-width:375px; -moz-column-width: 375px; /*每列宽度*/ -webkit-colum ...
- Numpy系列(十)- 掩码数组
简介 有时候数据集中存在缺失.异常或者无效的数值,我们可以标记该元素为被屏蔽(无效)状态. import numpy as np import numpy.ma as ma x = np.array( ...
- NOI-OJ 2.2 ID:8758 2的幂次方表示
思路 可以把任意一个数转化为2^a+2^b+2^c+...+2^n 例如137的二进制为10001001,这就等效于2^7+2^3+2^0 以上结果如何通过程序循环处理呢?需要把数字n分解为上述公式, ...
- JN_0006:MongoDB未授权访问漏洞处理
开启MongoDB服务时不添加任何参数时,默认是没有权限验证的,登录的用户可以通过默认端口无需密码对数据库任意操作而且可以远程访问数据库. 2.[修复建议]:临时方案:配置AUTH,做好访问认证.打开 ...
- 还在用Json完成Ajax,改用Beetl吧
原文链接:https://blog.csdn.net/xiandafu/article/details/44216905 作者:Beetl作者,闲大赋 浏览器通过AJAX,服务器返回json数据,无刷 ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- spring和mybatis的整合开发(基于MapperFactoryBean的整合开发(方便简单不复杂))
MapperFactoryBean是mybati-spring团队提供的一个用于根据mapper接口生成mapper对象的类. 在spring配置文件中可以配置以下参数: 1.mapperInterf ...
- What a Ridiculous Election UVALive - 7672 (BFS)
题目链接: E - What a Ridiculous Election UVALive - 7672 题目大意: 12345 可以经过若干次操作转换为其它五位数. 操作分三种,分别为: 操作1:交 ...
- pyhon 模块 IP/端口 扫描
用到了python-nmap模块(注意是 python-nmap模块 不是nmap模块 且不要安装nmap模块!!!!) windows 中还需要下载一个 nmap 软件: 下载地址: https:/ ...