Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html
题解
首先建个SAM。
一个结论:对于parent树上任意一个点x,以及它所代表的子树内任意一个点y,设节点y代表的最长串为S,设节点x代表的串为T1,T2,T3,...,设 F(S,T) 表示串T在S中的出现次数,则 F(S,T1) = F(S,T2) = F(S,T3) = ...
证明:假设串 Ta 和 Tb 在 S 中的出现次数不同,且 |Ta|+1=|Tb| 则必然存在一个位置,使得将 Tb 放在这里的时候,它的最左端点不和 S 匹配,其他位置都匹配,这样的话,Tb 的 Right 集合至少比 Ta 多这个位置,与 “Ta,Tb 都是节点 x 代表的串” 矛盾。故原命题得证。
第二个结论:一定存在一个最优解,使得 $\forall 1<i\leq k$, $S_{i-1}$ 是 $S_i$ 的 Border 。
这个很好证,如果不是 Border ,把 $S_i$ 两边多出来的割掉一定不亏。
于是我们可以开始规划算法了。
设 $dp[S]$ 表示每次保证前一个串在后一个串中出现至少 2 次,从空串转移到串 $S$ 的最多转移次数。
我们把状态用 parent 树上的节点表示,由于第一个结论,对于每一个节点,我们可以只把这个节点代表的最长串作为有效状态;转移的时候,只要看看父亲的串在当前节点的串中出现次数是否至少2次,如果不到,就直接继承父亲的结果,否则更新为当前结果; 判断出现多少次需要处理出 Right 集合,线段树合并即可。
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=200005*2;
int n;
namespace seg{
const int S=N*50;
int ls[S],rs[S],size[S],cnt,root;
void Init(){
cnt=root=0;
clr(ls),clr(rs),clr(size);
}
void Ins(int &rt,int L,int R,int x){
if (!rt)
rt=++cnt;
size[rt]++;
if (L==R)
return;
int mid=(L+R)>>1;
if (x<=mid)
Ins(ls[rt],L,mid,x);
else
Ins(rs[rt],mid+1,R,x);
}
int Merge(int a,int b,int L,int R){
if (!a||!b)
return a+b;
int rt=++cnt;
if (L==R)
size[rt]=1;
else {
int mid=(L+R)>>1;
ls[rt]=Merge(ls[a],ls[b],L,mid);
rs[rt]=Merge(rs[a],rs[b],mid+1,R);
size[rt]=size[ls[rt]]+size[rs[rt]];
}
return rt;
}
int Query(int rt,int L,int R,int xL,int xR){
if (!rt||xL>R||L>xR)
return 0;
if (xL<=L&&R<=xR)
return size[rt];
int mid=(L+R)>>1;
return Query(ls[rt],L,mid,xL,xR)
+Query(rs[rt],mid+1,R,xL,xR);
}
}
namespace SAM{
int last,size,root;
struct Node{
int Next[26],fa,Max,pos;
}t[N];
int Init(){
clr(t);
return last=size=root=1;
}
void extend(int c,int ps){
int p=last,np=++size,q,nq;
t[np].Max=t[p].Max+1,t[np].pos=ps;
for (;p&&!t[p].Next[c];p=t[p].fa)
t[p].Next[c]=np;
if (!p)
t[np].fa=root;
else {
q=t[p].Next[c];
if (t[p].Max+1==t[q].Max)
t[np].fa=q;
else {
nq=++size;
t[nq]=t[q],t[nq].Max=t[p].Max+1,t[nq].pos=ps;
t[np].fa=t[q].fa=nq;
for (;p&&t[p].Next[c]==q;p=t[p].fa)
t[p].Next[c]=nq;
}
}
last=np;
}
int id[N],tax[N],rt[N];
void sort(){
clr(tax);
for (int i=1;i<=size;i++)
tax[t[i].Max]++;
for (int i=1;i<=size;i++)
tax[i]+=tax[i-1];
for (int i=1;i<=size;i++)
id[tax[t[i].Max]--]=i;
}
void build(){
sort();
seg::Init();
for (int i=size;i>1;i--)
seg::Ins(rt[id[i]],1,n,t[id[i]].pos);
for (int i=size;i>1;i--){
int x=id[i],f=t[x].fa;
rt[f]=seg::Merge(rt[f],rt[x],1,n);
}
}
int dp[N],nid[N];
int Horse_NMDP(){
int ans=0;
dp[1]=0,nid[1]=1;
for (int i=2;i<=size;i++){
int x=id[i],f=nid[t[x].fa];
if (f==1||seg::Query(rt[f],1,n,t[x].pos-t[x].Max+t[f].Max
,t[x].pos)>=2)
dp[x]=dp[f]+1,nid[x]=x;
else
dp[x]=dp[f],nid[x]=f;
ans=max(ans,dp[x]);
}
return ans;
}
}
using SAM::t;
using SAM::extend;
char s[N];
int main(){
n=read();
scanf("%s",s+1);
SAM::Init();
for (int i=1;i<=n;i++)
extend(s[i]-'a',i);
SAM::build();
cout<<SAM::Horse_NMDP()<<endl;
return 0;
}
Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划的更多相关文章
- Codeforces.700E.Cool Slogans(后缀自动机 线段树合并 DP)
题目链接 \(Description\) 给定一个字符串\(s[1]\).一个字符串序列\(s[\ ]\)满足\(s[i]\)至少在\(s[i-1]\)中出现过两次(\(i\geq 2\)).求最大的 ...
- 【Codeforces 1037H】Security(SAM & 线段树合并)
Description 给出一个字符串 \(S\). 给出 \(Q\) 个操作,给出 \(L, R, T\),求字典序最小的 \(S_1\),使得 \(S^\prime\) 为\(S[L..R]\) ...
- Codeforces 1276F - Asterisk Substrings(SAM+线段树合并+虚树)
Codeforces 题面传送门 & 洛谷题面传送门 SAM hot tea %%%%%%% 首先我们显然可以将所有能够得到的字符串分成六类:\(\varnothing,\text{*},s, ...
- 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree
原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...
- UOJ#395. 【NOI2018】你的名字 字符串,SAM,线段树合并
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ395.html 题解 记得同步赛的时候这题我爆0了,最暴力的暴力都没调出来. 首先我们看看 68 分怎么做 ...
- CF700E-Cool Slogans【SAM,线段树合并,dp】
正题 题目链接:https://www.luogu.com.cn/problem/CF700E 题目大意 给出一个字符串\(S\),求一个最大的\(k\)使得存在\(k\)个字符串其中\(s_1\)是 ...
- loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...
- CodeForces - 666E: Forensic Examination (广义SAM 线段树合并)
题意:给定字符串S,然后M个字符串T.Q次询问,每次给出(L,R,l,r),问S[l,r]在L到R这些T字符串中,在哪个串出现最多,以及次数. 思路:把所有串建立SAM,然后可以通过倍增走到[l,r] ...
- 2019.02.27 bzoj4556: [Tjoi2016&Heoi2016]字符串(二分答案+sam+线段树合并)
传送门 题意:给一个字符串SSS. 有mmm次询问,每次给四个参数a,b,c,da,b,c,da,b,c,d,问s[a...b]s[a...b]s[a...b]的所有子串和s[x...y]s[x... ...
随机推荐
- 使用bat脚本永久激活Windows系统(摘抄)
使用bat脚本永久激活Windows系统 每次重装完系统后,右下角会提示系统未激活,无法进行一些个性化设置. 在这里我自己写了一个bat脚本用于激活Windows系统.(仅供学习) 文件下载: 链 ...
- Android 6.0以上动态获取权限
首先在清单文件中注册 然后在MainActivity.java中将权限封装到一个String数组中 static final String[] PERMISSION = new String[]{ M ...
- mybatis返回结果封装为map的探索
需求 根据课程id 列表,查询每个课程id的总数,放到一个map里 最简单的就是循环遍历,每一个都查询一次网上说mybatis可以返回Map 和 List<Map>两种类型 尝试 直接返回 ...
- 记录一次被bc利用跳转过程分析
挖公司的项目站,发现站点一访问就直接跳转到了赌博站,有点懵逼,简单分析下hc利用过程: 公司项目站:http://***.com 当我访问它: 通过http:***.com直接跳转到了306648.c ...
- java jdbc ResultSet结果通过java反射赋值给java对象
在不整合框架的情况下,使用jdbc从数据库读取数据时都得一个个的get和set,不仅累代码还显得不简洁,所以利用java的反射机制写了一个工具类,这样用jdbc从数据库拿数据的时候就不用那么麻烦了. ...
- SNMP源码分析之(一)配置文件部分
snmpd.conf想必不陌生.在进程启动过程中会去读取配置文件中各个配置.其中几个参数需要先知道是干什么的: token:配置文件的每行的开头,例如 group MyROGroup v1 readS ...
- EF CodeFirst系列(9)---添加初始化数据和数据库迁移策略
1.添加初始化数据(Seed) 我们可以在初始化数据库的过程中给数据库添加一些数据.为了实现初始化数据(seed data)我们必须创建一个自定义的数据库初始化器(DB initializer),并重 ...
- 【ShaderToy】新玩家~❤
最近对shader产生了浓厚兴趣,发现一个超有意思的网站shadertoy.com,各种有意思的shader,很多都是百行以内代码实现,除了学习,作为opgl的练习场所也很不错. 分享今天看的一篇sh ...
- 消除导入MNIST数据集发出的警告信息
原本导入数据集你仅需这样: # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = ...
- Leetcode#70. Climbing Stairs(爬楼梯)
题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...