[xdoj1158]阶乘求逆元(常用于求组合数)
http://acm.xidian.edu.cn/problem.php?id=1158
解题关键:此题注意将$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$转化为$C_{x + y}^{x + k}$
利用二项式定理,
一方面,
${(1 + a)^y}{(1 + \frac{1}{a})^x}$的${a^k}$项的系数,第一个二项式的${a^j}$的系数$C_y^j$,第二个二项式的${a^{ - i}}$系数为$C_x^i$,令$j - i = k$,$j = i + k$,即$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$
另一方面,
${(1 + a)^y}{(1 + \frac{1}{a})^x} = {(1 + a)^{x + y}}{a^{ - x}}$,此时${a^k}$项的系数为$C_{x + y}^{x + k}$,得证。
1、打表
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
ll x,y,k;
ll fac[],inv[]; ll mod_pow(ll x,ll n,ll mod){
ll res=;
while(n){
if(n&) res=res*x%mod;
n>>=;
x=x*x%mod;
}
return res;
} ll Inv(ll x){
return mod_pow(x,mod-,mod);
} int main(){
fac[]=;
for(int i=;i<=;i++) fac[i]=fac[i-]*i%mod;//预处理一下,阶乘
inv[]=mod_pow(fac[],mod-,mod);//Fac[N]^{MOD-2}
for(int i=-;i>=;i--) inv[i]=inv[i+]*(i+)%mod; while(~scanf("%lld%lld%lld",&x,&y,&k)){
if(y==k) printf("1\n");
else if(y<k) printf("0\n");
// else printf("%lld\n",fac[x+y]*inv(fac[x+k])%mod*inv(fac[y-k])%mod);
else printf("%lld\n",(fac[x+y]%mod*inv[x+k]%mod*inv[y-k]%mod+mod)%mod);
}
return ;
}
2、打表+逆元实现
为什么是$n{!^{\bmod - 2}}$
$n{!^{p - 2}}*n! = n{!^{p - 1}} = 1\bmod {\rm{ p;}}$(费马小定理)p为质数,此题中即为mod
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
ll x,y,k;
ll fac[],inv[]; ll mod_pow(ll x,ll n,ll mod){
ll res=;
while(n){
if(n&) res=res*x%mod;
n>>=;
x=x*x%mod;
}
return res;
} ll Inv(ll x){
return mod_pow(x,mod-,mod);
} int main(){
fac[]=;
for(int i=;i<=;i++) fac[i]=fac[i-]*i%mod;//预处理一下,阶乘
//inv[2000000]=mod_pow(fac[2000000],mod-2,mod);//Fac[N]^{MOD-2}
//for(int i=2000000-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod; while(~scanf("%lld%lld%lld",&x,&y,&k)){
if(y==k) printf("1\n");
else if(y<k) printf("0\n");
else printf("%lld\n",fac[x+y]*Inv(fac[x+k])%mod*Inv(fac[y-k])%mod);
//else printf("%lld\n",(fac[x+y]%mod*inv[x+k]%mod*inv[y-k]%mod+mod)%mod);
}
return ;
}
[xdoj1158]阶乘求逆元(常用于求组合数)的更多相关文章
- HNU 12933 Random Walks Catalan数 阶乘求逆元新技能
一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法. 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推 ...
- 扩展gcd求逆元
当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...
- 求组合数、求逆元、求阶乘 O(n)
在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- 牛客小白月赛14 -B (逆元求组合数)
题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...
随机推荐
- eclipse---个人设置
window---- preferences -----修改背景颜色 -----修改字体 ----修改窗口主题 ----设置编码 -----设置编译环境 ----设置web项目JDK编译的版本 --- ...
- html ---- web sql 例子
<!doctype html> <html> <head> <meta charset="utf-8"> <script> ...
- FreeMarker使用后台枚举
//页面使用枚举全路径访问 model.addAttribute("enums", BeansWrapper.getDefaultInstance().getEnumModels( ...
- Ubuntu dpkg 查询已安装的软件包
要检查特定的包,比如firefox是否安装了,使用这个命令: dpkg -s firefox 要列出你系统中安装的所有包,输入下面的命令: dpkg --get-selections 你同样可以通过g ...
- MySQL部署时Table 'mysql.plugin' doesn't exist的解决
今天部署了免安装版的MySQL,出现了Table 'mysql.plugin' doesn't exist的问题,苦恼了好久,终于在网上找到了解决方案,现整理一下给大家分享: 系统环境:Win10 6 ...
- 大话设计模式--原型模式 Prototype -- C++实现
1. 原型模式: 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象... 注意: 拷贝的时候是浅拷贝 还是 深拷贝, 来考虑是否需要重写拷贝构造函数. 关键在于: virtual Pro ...
- 012_流式计算系统(Mahout协同过滤)
课程介绍 课程内容 1.Mahout是什么 l Mahout是一个算法库,集成了很多算法. l Apache Mahout 是 Apache Software Foundation(ASF)旗下的 ...
- html布局 左右固定,中间只适应,三种方法实现
html布局 左右固定,中间只适应,三种方法实现 使用自身浮动法定位 //html <h3>使用自身浮动法定位</h3> <div id="left_self& ...
- DIV+CSS专题:第一天 XHTML CSS基础知识
欢迎大家学习<十天学会web标准>,也就是我们常说的DIV+CSS.不过这里的DIV+CSS是一种错误的叫法,建议大家还是称之为web标准. 学习本系列教程需有一定html和css基础 ...
- python3 字典属性
1.字典创建 >>> D={} >>> D {} >>> D2={:,(,):::'d'}} #冒号构造 1.使用 { }和 : 直接创建 &g ...