[xdoj1158]阶乘求逆元(常用于求组合数)
http://acm.xidian.edu.cn/problem.php?id=1158
解题关键:此题注意将$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$转化为$C_{x + y}^{x + k}$
利用二项式定理,
一方面,
${(1 + a)^y}{(1 + \frac{1}{a})^x}$的${a^k}$项的系数,第一个二项式的${a^j}$的系数$C_y^j$,第二个二项式的${a^{ - i}}$系数为$C_x^i$,令$j - i = k$,$j = i + k$,即$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$
另一方面,
${(1 + a)^y}{(1 + \frac{1}{a})^x} = {(1 + a)^{x + y}}{a^{ - x}}$,此时${a^k}$项的系数为$C_{x + y}^{x + k}$,得证。
1、打表
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
ll x,y,k;
ll fac[],inv[]; ll mod_pow(ll x,ll n,ll mod){
ll res=;
while(n){
if(n&) res=res*x%mod;
n>>=;
x=x*x%mod;
}
return res;
} ll Inv(ll x){
return mod_pow(x,mod-,mod);
} int main(){
fac[]=;
for(int i=;i<=;i++) fac[i]=fac[i-]*i%mod;//预处理一下,阶乘
inv[]=mod_pow(fac[],mod-,mod);//Fac[N]^{MOD-2}
for(int i=-;i>=;i--) inv[i]=inv[i+]*(i+)%mod; while(~scanf("%lld%lld%lld",&x,&y,&k)){
if(y==k) printf("1\n");
else if(y<k) printf("0\n");
// else printf("%lld\n",fac[x+y]*inv(fac[x+k])%mod*inv(fac[y-k])%mod);
else printf("%lld\n",(fac[x+y]%mod*inv[x+k]%mod*inv[y-k]%mod+mod)%mod);
}
return ;
}
2、打表+逆元实现
为什么是$n{!^{\bmod - 2}}$
$n{!^{p - 2}}*n! = n{!^{p - 1}} = 1\bmod {\rm{ p;}}$(费马小定理)p为质数,此题中即为mod
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
ll x,y,k;
ll fac[],inv[]; ll mod_pow(ll x,ll n,ll mod){
ll res=;
while(n){
if(n&) res=res*x%mod;
n>>=;
x=x*x%mod;
}
return res;
} ll Inv(ll x){
return mod_pow(x,mod-,mod);
} int main(){
fac[]=;
for(int i=;i<=;i++) fac[i]=fac[i-]*i%mod;//预处理一下,阶乘
//inv[2000000]=mod_pow(fac[2000000],mod-2,mod);//Fac[N]^{MOD-2}
//for(int i=2000000-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod; while(~scanf("%lld%lld%lld",&x,&y,&k)){
if(y==k) printf("1\n");
else if(y<k) printf("0\n");
else printf("%lld\n",fac[x+y]*Inv(fac[x+k])%mod*Inv(fac[y-k])%mod);
//else printf("%lld\n",(fac[x+y]%mod*inv[x+k]%mod*inv[y-k]%mod+mod)%mod);
}
return ;
}
[xdoj1158]阶乘求逆元(常用于求组合数)的更多相关文章
- HNU 12933 Random Walks Catalan数 阶乘求逆元新技能
一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法. 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推 ...
- 扩展gcd求逆元
当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...
- 求组合数、求逆元、求阶乘 O(n)
在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- 牛客小白月赛14 -B (逆元求组合数)
题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...
随机推荐
- Ubuntu 16.04更换源
Ubuntu 16.04下载软件速度有点慢,因为默认的是从国外下载软件,那就更换到国内比较好的快速更新源(就是这些软件所在的服务器),一般直接百度Ubuntu更新源就能出来一大堆,这时候最好是找和自己 ...
- rails dependent
dependent 可以設定當物件刪除時,也會順便刪除它的 has_many 物件: class Event < ActiveRecord::Base has_many :attendees, ...
- 【反思】一个价值两天的BUG,无论工作还是学习C语言的朋友都看看吧!
博文原创,转载请联系博主! 使用C语言也有两个年头了,BUG写出来过不少,也改过不少BUG.但是偏偏就是有这么一个BUG让我手头的项目停工了两天,原因从百度找到谷歌,资料从MAN手册找到RFC也没有找 ...
- grunt小教程
本人的博客写了grunt的小教程,从零开始,一步一步的通过例子讲解,希望喜欢的同学给我的github上加颗星,谢谢! github地址: https://github.com/manlili/grun ...
- Subnet Pools and Address Scopes
Why is IPAM important for Neutron? •No VM connectivity without a valid IP assigned •Duplicate subne ...
- python第二篇:windows 下virtualenvwrapper虚拟环境搭建
优点 安装过程 第一步:安装virtualenv pip install virtualenv 第二步:新建virtualenv virtualenv testvir 第三步:运行虚拟环境相关命令 进 ...
- php数据结构课程---2、链表(php中 是如何实现单链表的(也就是php中如何实现对象引用的))
php数据结构课程---2.链表(php中 是如何实现单链表的(也就是php中如何实现对象引用的)) 一.总结 一句话总结: php是弱类型语言,变量即可表示数值,也可表示对象:链表节点的数据域的值就 ...
- 机器学习(二十四)— 偏差Bias 与方差Variance
1.首先 Error = Bias + Variance Error反映的是整个模型的准确度, Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度, Variance反映的是模 ...
- Django-01
知识预览 Django基本命令 二 路由配置系统(URLconf) 三 编写视图 四 Template 五 数据库与ORM admin的配置 一 什么是web框架? 框架,即framework,特指为 ...
- 创建第一个Servlet并定制Sevlet模板
我们已经为eclipse配好了Tomcat服务器,创建了Web工程,现在是时候该创建一个Servlet向世界问好了! 第一步:创建一个Web工程,选中”src“文件夹 -->单击右键,鼠标移到” ...