[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=4818

[算法]

考虑容斥 , 用有至少有一个质数的合法序列数 - 没有质数的合法序列数

这两个问题是等价的 , 为方便讨论 , 我们考虑前者该如何计算 :

用fi , j表示前i个数 , 模p余j的合法序列数

显然有fi , j = sigma{ fi - 1 , j - k }

矩阵优化即可

时间复杂度 : O(M + logN)

[代码]

#include<bits/stdc++.h>
using namespace std; #ifndef LOCAL
#define eprintf(...) fprintf(stderr , _VA_ARGS)
#else
#define eprintf(...) 42
#endif typedef long long ll;
typedef long double ld;
typedef vector< int > vi;
typedef pair<int , int> pii;
typedef pair<ll , int> pli;
typedef pair<ll , ll> pll;
typedef unsigned long long ull;
#define mp make_pair
#define fi first
#define se second
const int N = 2e7 + ;
const int P = ; struct Tmatrix {
int mat[][];
} a; int n , m , p , tot;
int prime[N] , sa[] , sb[];
bool lab[N] , f[N]; template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void read(T &x) {
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline void sieve( ) {
for (int i = ; i <= m; ++i) {
if (!f[i]) {
prime[++tot] = i;
lab[i] = true;
}
for (int j = ; j <= tot; ++j) {
int tmp = i * prime[j];
if (tmp > m) break;
f[tmp] = true;
if (i % prime[j] == ) break;
}
}
}
inline int sub(int x , int y) {
x -= y;
while (x < ) x += P;
return x;
}
inline void multipy(Tmatrix &a , Tmatrix b) {
Tmatrix c;
for (int i = ; i < p; ++i) {
for (int j = ; j < p; ++j) {
c.mat[i][j] = ;
}
}
for (int i = ; i < p; ++i) {
for (int j = ; j < p; ++j) {
for (int k = ; k < p; ++k) {
c.mat[i][j] = (c.mat[i][j] + 1ll * a.mat[i][k] * b.mat[k][j] % P) % P;
}
}
}
for (int i = ; i < p; ++i) {
for (int j = ; j < p; ++j) {
a.mat[i][j] = c.mat[i][j];
}
}
}
inline void qpow(Tmatrix &a , int n) {
Tmatrix b , res;
for (int i = ; i < p; ++i) {
for (int j = ; j < p; ++j) {
res.mat[i][j] = (i == j);
b.mat[i][j] = a.mat[i][j];
}
}
while (n > ) {
if (n & ) multipy(res , b);
multipy(b , b);
n >>= ;
}
for (int i = ; i < p; ++i) {
for (int j = ; j < p; ++j) {
a.mat[i][j] = res.mat[i][j];
}
}
}
inline int calc(int n , int type) {
for (int i = ; i < p; ++i) {
for (int j = ; j < p; ++j) {
int k = (i - j + p) % p;
a.mat[i][j] = type == ? sa[k] : sb[k];
}
}
qpow(a , n);
return a.mat[][];
} int main() { read(n); read(m); read(p);
sieve( );
for (int i = ; i <= m; ++i) {
sa[i % p] = (sa[i % p] + ) % P;
if (!lab[i]) sb[i % p] = (sb[i % p] + ) % P;
}
printf("%d\n" , sub(calc(n , ) , calc(n , ))); return ;
}

[SDOI 2017] 序列计数的更多相关文章

  1. [BZOJ 4818] [SDOI 2017] 序列计数

    Description Alice想要得到一个长度为 \(n\) 的序列,序列中的数都是不超过 \(m\) 的正整数,而且这 \(n\) 个数的和是 \(p\) 的倍数. Alice还希望,这 \(n ...

  2. BZOJ4818 序列计数

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MB Description Alice想要得到一个长度为n的序列,序列中的数都是 ...

  3. [BZOJ4818][SDOI2017]序列计数(动规+快速幂)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 972  Solved: 581[Submit][Status ...

  4. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  5. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  6. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  7. luogu3702-[SDOI2017]序列计数

    Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...

  8. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  9. P3702 [SDOI2017]序列计数

    P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...

随机推荐

  1. C#数组 多个集合和数组的操作(合并,去重,拆分,判断)

    http://www.cnblogs.com/liguanghui/archive/2011/11/09/2242309.html http://www.cnblogs.com/dreamszx/ar ...

  2. Django下MEDIA_ROOT, MEDIA_URL, STATIC_ROOT, STATIC_URL解惑

    Django中settings中的四个设置参数的一些故事: MEDIA_ROOT, MEDIA_URL, STATIC_ROOT, STATIC_URL 1.MEDIA_ROOT与MEDIA_URL ...

  3. Swap file "/etc/.hosts.swp" already exists! [O]pen Read-Only, (E)dit anyway, (R)ecover, (D)elete it,

    非正常关闭vi编辑器时会生成一个.swp文件 非正常关闭vi编辑器时会生成一个.swp文件 关于swp文件 使用vi,经常可以看到swp这个文件,那这个文件是怎么产生的呢,当你打开一个文件,vi就会生 ...

  4. ButterKnife 原理解析

    一.使用方法 1.添加依赖. implementation 'com.jakewharton:butterknife:8.8.1' annotationProcessor 'com.jakewhart ...

  5. 3.22课·········CSS样式表

    CSS(Cascading Style Sheet,叠层样式表),作用是美化HTML网页. /*注释区域*/    此为注释语法 一.样式表 (一)样式表的分类 1.内联样式表 和HTML联合显示,控 ...

  6. PAT 天梯赛 L2-014. 列车调度 【队列】

    题目链接 https://www.patest.cn/contests/gplt/L2-014 思路 其实 每条火车道 都可以视为一个队列 满足队列的性质 当已经存在的队列 中 的列车序号 都小于 当 ...

  7. PAT 天梯赛 L2-016. 愿天下有情人都是失散多年的兄妹 【BFS】

    题目链接 https://www.patest.cn/contests/gplt/L2-016 思路 用BFS 每层 遍历当代 并且查找当代是否有重复 有重复就跳出 然后 POP 并且将他们的下一代 ...

  8. pandas.resample()

    http://www.cnblogs.com/hhh5460/p/5596340.html resample与groupby的区别:resample:在给定的时间单位内重取样groupby:对给定的数 ...

  9. vim终端配色(非gui版本)——Monokai

    啥也别说,先上图. 具体配置: 1. 将molokai.vim文件(下面贴出)放到 ~/.vim/colors 目录下,如没有此文件夹需自行创建. 提示:~ 代表用户主目录,如我的用户名是 akaed ...

  10. eclipse中,项目无法在tomcat中发布(project facet java version 1.7 is not supported)

    在tomcat中发布项目时无法添加项目,错误信息:project facet java version 1.7 is not supported,如下图 这是由于你的tomcat的jdk版本低于你项目 ...