BestCoder Round #80 待填坑
Lucky
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1443 Accepted Submission(s): 767
For
a set of numbers S,we set the minimum non-negative integer,which can't
be gotten by adding the number in S,as the lucky number.Of course,each
number can be used many times.
Now,
given a set of number S, you should answer whether S has a lucky
number."NO" should be outputted only when it does have a lucky
number.Otherwise,output "YES".
In each case,the first line is a number n,which is the size of the number set.
Next are n numbers,means the number in the number set.
1≤n≤105,1≤T≤10,0≤ai≤109.
1
2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
int n;
int a[maxn]; int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
rdint(n); bool fg1 = false, fg2 = false;
for (int i = 1; i <= n; i++) {
rdint(a[i]);
if (a[i] == 1)fg1 = true;
if (a[i] == 0)fg2 = true;
} if (fg1&&fg2)cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}
Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2913 Accepted Submission(s): 976
Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.
fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise
He gives you 5 numbers n,a,b,c,p,and he will eat fn foods.But there are only p foods,so you should tell him fn mod p.
Each testcase has 5 numbers,including n,a,b,c,p in a line.
1≤T≤10,1≤n≤1018,1≤a,b,c≤109,p is a prime number,and p≤109+7.
5 3 3 3 233
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll n, a, b, c, p; struct mat {
ll m[3][3];
mat() { ms(m); }
}; mat operator *(mat a, mat b) {
mat c;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j]) % (p - 1);
}
}
return c;
} mat qpow(mat a, ll b) {
mat c;
for (int i = 0; i < 3; i++)c.m[i][i] = 1;
while (b) {
if (b & 1)c = c * a;
a = a * a; b >>= 1;
}
return c;
} ll qpow(ll a, ll b) {
ll ans = 1;
ll tmp = a;
while (b) {
if (b % 2)ans = (ans * tmp) % p; tmp = (tmp*tmp) % p; b >>= 1;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
cin >> n >> a >> b >> c >> p;
if (n == 1)cout << 1 << endl;
else if (n == 2)cout << qpow(a, b) << endl;
else if (a%p == 0)cout << 0 << endl;
else {
mat tmp;
tmp.m[0][0] = c; tmp.m[0][1] = 1; tmp.m[0][2] = 1;
tmp.m[1][0] = 1; tmp.m[2][2] = 1;
mat ans = qpow(tmp, n - 2);
ll res = (ans.m[0][0] % (p - 1) + ans.m[0][2] % (p - 1))*b % (p - 1);
cout << qpow(a, res) << endl;
}
}
return 0;
}
Segment
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2422 Accepted Submission(s): 896
Today she finds an interesting problem.She finds a segment x+y=q.The segment intersect the axis and produce a delta.She links some line between (0,0) and the node on the segment whose coordinate are integers.
Please calculate how many nodes are in the delta and not on the segments,output answer mod P.
Then,each line has two integers q,P.
q is a prime number,and 2≤q≤1018,1≤P≤1018,1≤T≤10.
2 107
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll p;
inline ll qpow(ll a, ll b) {
ll ans = 0;
while (b) {
if (b & 1)ans = (ans + a) % p;
b >>= 1; a = (a + a) % p;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
ll q; cin >> q >> p;
if ((q - 1) % 2 == 0)cout << qpow((q - 1) / 2, (q - 2)) << endl;
else cout << qpow((q - 2) / 2, (q - 1)) << endl;
}
return 0;
}
BestCoder Round #80 待填坑的更多相关文章
- hdu 5667 BestCoder Round #80 矩阵快速幂
Sequence Accepts: 59 Submissions: 650 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- BestCoder Round #80 1002
HDU 5666 Segment 题意:给你条斜率为-1,常数项为q(q为质数)的直线,连接原点与直线上整数格点,问你在有多少个格点在形成的无数个三角形内,而不在线段上,结果对P取模. 思路:best ...
- Bestcoder Round# 80
[1003 Sequence] 指数循环节,注意a mod p = 0的情况.此时你的循环节如果返回0,这时你会输出1,而实际上应该是0 #include <algorithm> #inc ...
- hdu5666 BestCoder Round #80
Segment Accepts: 418 Submissions: 2020 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 6553 ...
- hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】
#include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...
- css 填坑常用代码分享
以下是常用的代码收集,没有任何技术含量,只是填坑的积累.转载请注明出处,谢谢. 因为提交比较麻烦,后来转置github:https://github.com/jsfront/src/blob/mast ...
- Node学习笔记(四):gulp+express+io.socket部署angularJs2(填坑篇)
这篇就先暂停下上篇博客--你画我猜的进度,因为在做这个游戏的时候,想采用最新的ng2技术,奈何坑是一片又一片,这边就先介绍下环境部署和填坑史 既然要用ng2,首先要拿到资源,我这边用的是angular ...
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- bestcoder Round #7 前三题题解
BestCoder Round #7 Start Time : 2014-08-31 19:00:00 End Time : 2014-08-31 21:00:00Contest Type : ...
随机推荐
- docker 端口映射iptables: No chain/target/match by that name错误解决方法
pkill docker iptables -t nat -F ifconfig docker0 down brctl delbr docker0 service docker restart
- C语言学习笔记--指针概念
指针也是一种变量,占有内存空间,用来保存内存地址,在32位系统中指针的占用的内存大小为4个字节 1.*号的意义 (1)在指针声明时,*号表示所声明的变量为指针 (2)在指针使用时,*号表示取指针所指向 ...
- Yii::app()
Yii::app()返回的是你在index.php里创建的CWebApplication实例. 在一次请求处理过程中,这是个唯一的实例. Yii::app()主要负责一些全局性的功能模块,比如Yii: ...
- spring中的class配置不能使用properties中的字符串
1.比如在a.properties中我们声明了一个变量: classRoom=com.wc82.ClassRoom 2.然后在spring的配置文件中:applicationContext.xml,有 ...
- 【WebRTC】简介
WebRTC 名称源自网页实时通信(英语:Web Real-Time Communication)的缩写,是一个支持网页浏览器进行实时语音对话或视频对话的API.它于2011年6月1日开源并在Goog ...
- curl的特殊使用
1.php可以通过shell_exec()和其他系统函数使用curl,也可用PHP带的libcurl库. $curl = curl_init("wwww.baidu.com"); ...
- css知多少(8)——float上篇(转)
1. 引言 对于我们所有的web前端开发人员,float是或者曾经一度是你最熟悉的陌生人——你离不开它,却整天承受着它所带给你的各种痛苦,你以为它很简单就那么一点知识,但却驾驭不了它各种奇怪的现象. ...
- Gstreamer编程
一.简介 GStreamer是一个开源的多媒体框架库.利用它,可以构建一系列的媒体处理模块,包括从简单的ogg播放功能到复杂的音频(混音)和视频(非线性编辑)的处理.应用程序可以透明的利用解码和过滤技 ...
- 杭电ACM刷题(2):1005,Number Sequence 标签: 杭电acmC语言 2017-05-11 22:43 116人阅读
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- cJSON
http://blog.csdn.net/wangchangshuai0010/article/details/18225423