Lucky

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1443    Accepted Submission(s): 767

Problem Description
    Chaos August likes to study the lucky numbers.

For
a set of numbers S,we set the minimum non-negative integer,which can't
be gotten by adding the number in S,as the lucky number.Of course,each
number can be used many times.

Now,
given a set of number S, you should answer whether S has a lucky
number."NO" should be outputted only when it does have a lucky
number.Otherwise,output "YES".

 
Input
    The first line is a number T,which is case number.

In each case,the first line is a number n,which is the size of the number set.

Next are n numbers,means the number in the number set.

1≤n≤105,1≤T≤10,0≤ai≤109.

 
Output
    Output“YES”or “NO”to every query.
 
Sample Input
1
1
2
 
Sample Output
NO
 
只要有0和1就行了;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
int n;
int a[maxn]; int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
rdint(n); bool fg1 = false, fg2 = false;
for (int i = 1; i <= n; i++) {
rdint(a[i]);
if (a[i] == 1)fg1 = true;
if (a[i] == 0)fg2 = true;
} if (fg1&&fg2)cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}

Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2913    Accepted Submission(s): 976

Problem Description
    Holion August will eat every thing he has found.

Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.

fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise

He gives you 5 numbers n,a,b,c,p,and he will eat fn foods.But there are only p foods,so you should tell him fn mod p.

 
Input
    The first line has a number,T,means testcase.

Each testcase has 5 numbers,including n,a,b,c,p in a line.

1≤T≤10,1≤n≤1018,1≤a,b,c≤109,p is a prime number,and p≤109+7.

 
Output
    Output one number for each case,which is fn mod p.
 
Sample Input
1
5 3 3 3 233
 
Sample Output
190
 
1e18,必须得logn的算法;
快速幂!
前几项手算可以发现;
最后的结果都有a^b;那么我们先不看这个;
除这个以外,还有一个多项式;
不妨设为g(n);
可以发现 g(n)=c*g(n-1)+g(n-2)+1;
------> 矩阵快速幂;
构造则非常简单了;
由于我们fn=a^x mod p;
由费马小定理: a^x = a^( x mod ( p-1) )mod p;
所以对于指数这一项,我们可以降幂;
那么问题就解决了;
其实就是快速幂套一个快速幂的问题;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll n, a, b, c, p; struct mat {
ll m[3][3];
mat() { ms(m); }
}; mat operator *(mat a, mat b) {
mat c;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j]) % (p - 1);
}
}
return c;
} mat qpow(mat a, ll b) {
mat c;
for (int i = 0; i < 3; i++)c.m[i][i] = 1;
while (b) {
if (b & 1)c = c * a;
a = a * a; b >>= 1;
}
return c;
} ll qpow(ll a, ll b) {
ll ans = 1;
ll tmp = a;
while (b) {
if (b % 2)ans = (ans * tmp) % p; tmp = (tmp*tmp) % p; b >>= 1;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
cin >> n >> a >> b >> c >> p;
if (n == 1)cout << 1 << endl;
else if (n == 2)cout << qpow(a, b) << endl;
else if (a%p == 0)cout << 0 << endl;
else {
mat tmp;
tmp.m[0][0] = c; tmp.m[0][1] = 1; tmp.m[0][2] = 1;
tmp.m[1][0] = 1; tmp.m[2][2] = 1;
mat ans = qpow(tmp, n - 2);
ll res = (ans.m[0][0] % (p - 1) + ans.m[0][2] % (p - 1))*b % (p - 1);
cout << qpow(a, res) << endl;
}
}
return 0;
}

Segment

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2422    Accepted Submission(s): 896

Problem Description
    Silen August does not like to talk with others.She like to find some interesting problems.

Today she finds an interesting problem.She finds a segment x+y=q.The segment intersect the axis and produce a delta.She links some line between (0,0) and the node on the segment whose coordinate are integers.

Please calculate how many nodes are in the delta and not on the segments,output answer mod P.

 
Input
    First line has a number,T,means testcase number.

Then,each line has two integers q,P.

q is a prime number,and 2≤q≤1018,1≤P≤1018,1≤T≤10.

 
Output
    Output 1 number to each testcase,answer mod P.
 
Sample Input
1
2 107
 
Sample Output
0
 
sum=(q-1)*(q-2)/2;
用快速乘防止爆longlong;当然用 java也可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll p;
inline ll qpow(ll a, ll b) {
ll ans = 0;
while (b) {
if (b & 1)ans = (ans + a) % p;
b >>= 1; a = (a + a) % p;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
ll q; cin >> q >> p;
if ((q - 1) % 2 == 0)cout << qpow((q - 1) / 2, (q - 2)) << endl;
else cout << qpow((q - 2) / 2, (q - 1)) << endl;
}
return 0;
}

BestCoder Round #80 待填坑的更多相关文章

  1. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  2. BestCoder Round #80 1002

    HDU 5666 Segment 题意:给你条斜率为-1,常数项为q(q为质数)的直线,连接原点与直线上整数格点,问你在有多少个格点在形成的无数个三角形内,而不在线段上,结果对P取模. 思路:best ...

  3. Bestcoder Round# 80

    [1003 Sequence] 指数循环节,注意a mod p = 0的情况.此时你的循环节如果返回0,这时你会输出1,而实际上应该是0 #include <algorithm> #inc ...

  4. hdu5666 BestCoder Round #80

    Segment  Accepts: 418  Submissions: 2020  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 6553 ...

  5. hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】

    #include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...

  6. css 填坑常用代码分享

    以下是常用的代码收集,没有任何技术含量,只是填坑的积累.转载请注明出处,谢谢. 因为提交比较麻烦,后来转置github:https://github.com/jsfront/src/blob/mast ...

  7. Node学习笔记(四):gulp+express+io.socket部署angularJs2(填坑篇)

    这篇就先暂停下上篇博客--你画我猜的进度,因为在做这个游戏的时候,想采用最新的ng2技术,奈何坑是一片又一片,这边就先介绍下环境部署和填坑史 既然要用ng2,首先要拿到资源,我这边用的是angular ...

  8. BestCoder Round #89 02单调队列优化dp

    1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01  HDU 5944   水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...

  9. bestcoder Round #7 前三题题解

    BestCoder Round #7 Start Time : 2014-08-31 19:00:00    End Time : 2014-08-31 21:00:00Contest Type : ...

随机推荐

  1. Visual Studio 小工具

    折叠解决方案的每个项(Collapse Solution) 功能:折叠解决方案视图窗口中的解决方案或项目级别的每个项.包括嵌套在解决方案文件夹中的子项,引用和属性文件夹扩展节点. 源代码的文件头实现方 ...

  2. 2015.7.24 CAD库中列举五字代码点所属航路及终端区图,左连接的累加

    select decode(fb.tupr,null,'仅航路',decode(fc.aw,null,'仅终端区','航路及终端区')) 范围,pt 五字代码点,fb.tupr 终端区图及程序,fc. ...

  3. JSP+Servlet 无数据库模拟登录过程

    程序目录结构: index.jsp: <%@ page language="java" contentType="text/html; charset=utf-8& ...

  4. eclipse自动生成带参数说明方法注释

    自动生成方法的注释格式,例如 /*** @param str* @return * @throws  ParseException*/ 快捷键是alt+shift+j,将光标放在方法名上,按快捷键.会 ...

  5. latex bib format

    LaTeX 的对参考文献的处理实在是非常的方便,我用过几次,有些体会,写出来供大家参考.当然,自己的功力还不够深,有些地方问题一解决就罢手了,没有细究. LaTeX 对参考文献的处理有这么一些优点: ...

  6. oracle create user &tablespace & imp

    一.表空间 1.创建表空间 CREATE TABLESPACE 空间名称 DATAFILE '文件名1' SIZE 数字M [,'文件名2' SIZE 数字….] EXTENT MANAGEMENT ...

  7. Nginx 正向代理和反向代理

    正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板,简单的说,我是一个用户,我访问不了某网站,但是我能访问一个代理服务器这个代理服务器呢,他能访问那个我不能访问的网站于是我先连上代 ...

  8. Codeforces #495 Div2 problem E. Sonya and Ice Cream(1004E)

    网上的大多是用树的直径做的,但是一些比较巧妙的做法,来自https://www.cnblogs.com/qldabiaoge/p/9315722.html. 首先用set数组维护每一个节点所连接的边的 ...

  9. C++中的纯虚函数和虚函数的作用

    1. 虚函数和纯虚函数可以定义在同一个类(class)中,含有纯虚函数的类被称为抽象类(abstract class),而只含有虚函数的类(class)不能被称为抽象类(abstract class) ...

  10. php学习笔记-elseif

    <?php if(condition1) { func1(); }elseif(condition2) { func2(); }else { func3(); } ?> elseif需要明 ...