BestCoder Round #80 待填坑
Lucky
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1443 Accepted Submission(s): 767
For
a set of numbers S,we set the minimum non-negative integer,which can't
be gotten by adding the number in S,as the lucky number.Of course,each
number can be used many times.
Now,
given a set of number S, you should answer whether S has a lucky
number."NO" should be outputted only when it does have a lucky
number.Otherwise,output "YES".
In each case,the first line is a number n,which is the size of the number set.
Next are n numbers,means the number in the number set.
1≤n≤105,1≤T≤10,0≤ai≤109.
1
2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
int n;
int a[maxn]; int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
rdint(n); bool fg1 = false, fg2 = false;
for (int i = 1; i <= n; i++) {
rdint(a[i]);
if (a[i] == 1)fg1 = true;
if (a[i] == 0)fg2 = true;
} if (fg1&&fg2)cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}
Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2913 Accepted Submission(s): 976
Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.
fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise
He gives you 5 numbers n,a,b,c,p,and he will eat fn foods.But there are only p foods,so you should tell him fn mod p.
Each testcase has 5 numbers,including n,a,b,c,p in a line.
1≤T≤10,1≤n≤1018,1≤a,b,c≤109,p is a prime number,and p≤109+7.
5 3 3 3 233
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll n, a, b, c, p; struct mat {
ll m[3][3];
mat() { ms(m); }
}; mat operator *(mat a, mat b) {
mat c;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j]) % (p - 1);
}
}
return c;
} mat qpow(mat a, ll b) {
mat c;
for (int i = 0; i < 3; i++)c.m[i][i] = 1;
while (b) {
if (b & 1)c = c * a;
a = a * a; b >>= 1;
}
return c;
} ll qpow(ll a, ll b) {
ll ans = 1;
ll tmp = a;
while (b) {
if (b % 2)ans = (ans * tmp) % p; tmp = (tmp*tmp) % p; b >>= 1;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
cin >> n >> a >> b >> c >> p;
if (n == 1)cout << 1 << endl;
else if (n == 2)cout << qpow(a, b) << endl;
else if (a%p == 0)cout << 0 << endl;
else {
mat tmp;
tmp.m[0][0] = c; tmp.m[0][1] = 1; tmp.m[0][2] = 1;
tmp.m[1][0] = 1; tmp.m[2][2] = 1;
mat ans = qpow(tmp, n - 2);
ll res = (ans.m[0][0] % (p - 1) + ans.m[0][2] % (p - 1))*b % (p - 1);
cout << qpow(a, res) << endl;
}
}
return 0;
}
Segment
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2422 Accepted Submission(s): 896
Today she finds an interesting problem.She finds a segment x+y=q.The segment intersect the axis and produce a delta.She links some line between (0,0) and the node on the segment whose coordinate are integers.
Please calculate how many nodes are in the delta and not on the segments,output answer mod P.
Then,each line has two integers q,P.
q is a prime number,and 2≤q≤1018,1≤P≤1018,1≤T≤10.
2 107
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll p;
inline ll qpow(ll a, ll b) {
ll ans = 0;
while (b) {
if (b & 1)ans = (ans + a) % p;
b >>= 1; a = (a + a) % p;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
ll q; cin >> q >> p;
if ((q - 1) % 2 == 0)cout << qpow((q - 1) / 2, (q - 2)) << endl;
else cout << qpow((q - 2) / 2, (q - 1)) << endl;
}
return 0;
}
BestCoder Round #80 待填坑的更多相关文章
- hdu 5667 BestCoder Round #80 矩阵快速幂
Sequence Accepts: 59 Submissions: 650 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- BestCoder Round #80 1002
HDU 5666 Segment 题意:给你条斜率为-1,常数项为q(q为质数)的直线,连接原点与直线上整数格点,问你在有多少个格点在形成的无数个三角形内,而不在线段上,结果对P取模. 思路:best ...
- Bestcoder Round# 80
[1003 Sequence] 指数循环节,注意a mod p = 0的情况.此时你的循环节如果返回0,这时你会输出1,而实际上应该是0 #include <algorithm> #inc ...
- hdu5666 BestCoder Round #80
Segment Accepts: 418 Submissions: 2020 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 6553 ...
- hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】
#include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...
- css 填坑常用代码分享
以下是常用的代码收集,没有任何技术含量,只是填坑的积累.转载请注明出处,谢谢. 因为提交比较麻烦,后来转置github:https://github.com/jsfront/src/blob/mast ...
- Node学习笔记(四):gulp+express+io.socket部署angularJs2(填坑篇)
这篇就先暂停下上篇博客--你画我猜的进度,因为在做这个游戏的时候,想采用最新的ng2技术,奈何坑是一片又一片,这边就先介绍下环境部署和填坑史 既然要用ng2,首先要拿到资源,我这边用的是angular ...
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- bestcoder Round #7 前三题题解
BestCoder Round #7 Start Time : 2014-08-31 19:00:00 End Time : 2014-08-31 21:00:00Contest Type : ...
随机推荐
- 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...
- 问题:Custom tool error: Failed to generate code for the service reference 'AppVot;结果:添加Service Reference, 无法为服务生成代码错误的解决办法
添加Service Reference, 无法为服务生成代码错误的解决办法 我的解决方案是Silverlight+WCF的应用,Done Cretiria定义了需要在做完Service端的代码后首先运 ...
- 关于EF中实体和数据表以及查询语句映射的问题
关于EF中实体和数据表以及查询语句映射的问题? 很多人在使用的时候分不清楚 实体字段应该少于等于(数据库中的表字段或者SQL查询中的临时字段).这样在查询或者添加修改都不会出现问题 如果实体的字段大于 ...
- CentOS 6.3安装jdk(笔记整理)
1. 下载bin文件,切忌oracle上现在下载到的旧版本的jdk的bin都是网页(执行会报错,见本文最后的截图),他们需要登录oracle后才能下载,所以我这里的url是从googlecode里觅来 ...
- MyBatis总结六:resultMap详解(包含多表查询)
简介: MyBatis的每一个查询映射的返回类型都是ResultMap,只是当我们提供的返回类型属性是resultType的时候,MyBatis对自动的给我们把对应的值赋给resultType所指定对 ...
- 杭电acm 1021题
题意是要求能被3整除的数所以为了避免大数据的产生,直接对每个数据求余,然后相加 #include "iostream" using namespace std; int main( ...
- LPNMITEMACTIVATE pNMItemActivate = reinterpret_cast<LPNMITEMACTIVATE>(pNMHDR);
reinterpret_cast代表强制转化,即把pNMHDR强制转化成LPNMITEMACTIVATE类型的. reinterpret_cast<type-id> (expression ...
- poj3557 Map Generator
传送门 题目大意 给定两个数n,p;表示n个点中任意两点连边的概率为p,求生成的图是个连通块的概率 分析 我们发现直接求产生联通块的概率并不容易,于是我们转而考虑计算不能生成联通块的概率,公式如下: ...
- 95E Lucky Country
传送门 题目大意 如果一个数中不包含除4和7之外的数字则是幸运数.有n个岛屿,通过双向道路连接.这些岛屿被分为几个地区.每个岛属于恰好一个区域,同一区域中的任何两个岛之间存在道路,不同区域的任何两个岛 ...
- JOptionPane如何自定义按钮绑定事件
JOptionPane如何自定义按钮绑定事件 2018年01月29日 19:27:10 阅读数:475 摘自:https://blog.csdn.net/m0_37355951/article/det ...