Problem

A tree is a connected graph with no cycles.

A rooted tree is a tree in which one special vertex is called the root. If there is an edge between X and Y in a rooted tree, we say that Y is a child of X if X is closer to the root than Y (in other words, the shortest path from the root to X is shorter than the shortest path from the root to Y).

A full binary tree is a rooted tree where every node has either exactly 2 children or 0 children.

You are given a tree G with N nodes (numbered from 1 to N). You are allowed to delete some of the nodes. When a node is deleted, the edges connected to the deleted node are also deleted. Your task is to delete as few nodes as possible so that the remaining nodes form a full binary tree for some choice of the root from the remaining nodes.

Input

The first line of the input gives the number of test cases, TT test cases follow. The first line of each test case contains a single integer N, the number of nodes in the tree. The following N-1 lines each one will contain two space-separated integers: Xi Yi, indicating that G contains an undirected edge between Xi and Yi.

Output

For each test case, output one line containing "Case #xy", where x is the test case number (starting from 1) and y is the minimum number of nodes to delete from G to make a full binary tree.

Limits

1 ≤ T ≤ 100. 1 ≤ XiYi ≤ N Each test case will form a valid connected tree.

Small dataset

2 ≤ N ≤ 15.

Large dataset

2 ≤ N ≤ 1000.

Sample

Input    Output   
3
3
2 1
1 3
7
4 5
4 2
1 2
3 1
6 4
3 7
4
1 2
2 3
3 4
Case #1: 0
Case #2: 2
Case #3: 1

In the first case, G is already a full binary tree (if we consider node 1 as the root), so we don't need to do anything.

In the second case, we may delete nodes 3 and 7; then 2 can be the root of a full binary tree.

In the third case, we may delete node 1; then 3 will become the root of a full binary tree (we could also have deleted node 4; then we could have made 2 the root).

Google Code Jam 2014 Round 1 A:Problem B. Full Binary Tree的更多相关文章

  1. Google Code Jam 2014 Round 1 A:Problem C. Proper Shuffle

    Problem A permutation of size N is a sequence of N numbers, each between 0 and N-1, where each numbe ...

  2. Google Code Jam 2014 Round 1 A:Problem A Charging Chaos

    Problem Shota the farmer has a problem. He has just moved into his newly built farmhouse, but it tur ...

  3. Google Code Jam 2014 Round 1B Problem B

    二进制数位DP,涉及到数字的按位与操作. 查看官方解题报告 #include <cstdio> #include <cstdlib> #include <cstring& ...

  4. [C++]Store Credit——Google Code Jam Qualification Round Africa 2010

    Google Code Jam Qualification Round Africa 2010 的第一题,很简单. Problem You receive a credit C at a local ...

  5. Google Code Jam 2010 Round 1C Problem A. Rope Intranet

    Google Code Jam 2010 Round 1C Problem A. Rope Intranet https://code.google.com/codejam/contest/61910 ...

  6. [Google Code Jam (Qualification Round 2014) ] B. Cookie Clicker Alpha

    Problem B. Cookie Clicker Alpha   Introduction Cookie Clicker is a Javascript game by Orteil, where ...

  7. [Google Code Jam (Qualification Round 2014) ] A. Magic Trick

    Problem A. Magic Trick Small input6 points You have solved this input set.   Note: To advance to the ...

  8. Google Code Jam 2014 资格赛:Problem B. Cookie Clicker Alpha

    Introduction Cookie Clicker is a Javascript game by Orteil, where players click on a picture of a gi ...

  9. [C++]Saving the Universe——Google Code Jam Qualification Round 2008

    Google Code Jam 2008 资格赛的第一题:Saving the Universe. 问题描述如下: Problem The urban legend goes that if you ...

随机推荐

  1. [POJ 1935] Journey

    Link: POJ1935 传送门 Solution: 一道吓唬人的水题 注意这是一棵树,两点间仅有唯一的路径! 于是每个“关键点”和起点只有一条路径,想去起点另一棵子树上的节点必须要回到起点 如果必 ...

  2. linux-系统资源查看-动态

    1.top 2.sar http://blog.csdn.net/hguisu/article/details/7493661  很重要 http://blog.itpub.net/24435147/ ...

  3. jQuery插件开发 总结

    一般来说,jQuery插件的开发分为两种:一种是挂在jQuery命名空间下的全局函数,也可称为静态方法:另一种是jQuery对象级别的方法,即挂在jQuery原型下的方法,这样通过选择器获取的jQue ...

  4. linux的file指令

    显示文件的类型,用命令 file 可以使你知道某个文件究竟是ELF格式的可执行文件, 还是shell script文 件或是其他的什么格式 例如:#file startx 语 法:file [-beL ...

  5. java拦截器与过滤器打印请求url与参数

    HttpServletRequest httpServletRequest = (HttpServletRequest) request; HttpServletResponse httpServle ...

  6. Ubuntu 16.04 -- 同时配置Nginx(转发)和frp(内网映射)和HTTPS(ca加密) - 端口转发

    Ubuntu16.04下: sudo apt -get nginx 用这条命令安装完nginx之后, nginx在该目录下: 然后配置nginx: 如下: 红圈圈住的地方多写几个可以做负载均衡. 端口 ...

  7. 本地缓存localstorage使用

    最近做项目遇到一个问题,即从“个人中心”点击进入“修改支付宝”,需要自动获取用户手机号怎么做? 修改支付宝的api不提供用户手机号数据,但是发现个人中心提供,于是想通过localstorage在个人中 ...

  8. centos7 安装LNMP(php7)之mysql安装,更改密码,远程授权

    1.执行命令 yum install mysql mysql-server mysql-devel -y 知道出现complete!则安装mysql完成 当执行 service mysqld rest ...

  9. zabbix web监测

    web monitoring(监测)属于业务监控,用来监控Web站点多方面的可用性,可以监控Web站点的下载速度.返回码和响应时间.Zabbix能够检测HTML中包含的预先定义的字符串,也可以模拟登录 ...

  10. Web项目中用mybatis配置多个数据库

    需要在项目中配置多个数据库(比如一个mysql,一个oracle)的时候,可按照如下方式配置 首先是第一个数据库的配置 <bean name="transactionManager&q ...