题目:

(传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833]

题解:

第一次接触数位dp,真的是恶心。

首先翻阅了很多很多一维dp,因为要处理前缀0,所以根本搞不懂。

查询了dalaolidaxin的博客,又查阅了资料:

初探数位dp

才完全弄懂这个题。

具体的,我们设

f[i][j][k]为考虑所有i位数,最高位为j数,之中k的数目。

我们可以得出方程:

\[f[i][j][k] = \sum f[i-1][l][k] (j!=k)
\]

\[f[i][j][k] = \sum f[i-1][l][k] + 10^{i-1} (j==k)
\]

我们对这个方程作出解释:

前一项非常好理解,后一项的话就是前(i-1)位数共有\(10^{i-1}\)个,对于其中每一个,我们都可以在前面加k。

这样我们预处理出来了f。

然后我们考虑对于n分块计算。

以n = 4321为例。

首先统计3位及以下的数,这些数字没有限制,直接加就好。

然后统计4位数。

对于一个4位数,我们一位一位向下考虑,如果最高位<k,直接加,如果=k,加上n+1

具体见代码。

代码

#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
const int N = 25;
struct node {
ll a[N];
node() { memset(a, 0, sizeof(a)); }
ll &operator[](const int &x) { return a[x]; }
};
node operator+(const node &x, const node &y) {
node tmp;
for (int i = 0; i <= 9; i++)
tmp.a[i] = x.a[i] + y.a[i];
return tmp;
}
int len, a[N];
ll pow[N];
node f[N][N];
void init(ll n) {
len = 0;
while (n) {
a[++len] = n % 10;
n /= 10;
}
for (int i = 0; i <= 9; i++)
f[1][i][i] = 1;
for (int i = 2; i <= 14; i++) {
for (int j = 0; j <= 9; j++) {
for (int k = 0; k <= 9; k++)
f[i][j] = f[i][j] + f[i - 1][k];
f[i][j][j] += pow[i - 1];
}
}
}
node calc(ll n) {
node ans;
if (!n)
return ans;
memset(f, 0, sizeof(f));
init(n);
//统计前len-1位
for (int i = 1; i <= len - 1; i++) {
for (int j = 1; j <= 9; j++) {
ans = ans + f[i][j];
}
}
//开始统计len位数
for (int i = 1; i <= a[len] - 1; i++)
ans = ans + f[len][i];
n %= pow[len - 1];
ans[a[len]] += n + 1; //对于每一个最高位都可以统计一发
for (int i = len - 1; i; i--) {
for (int j = 0; j < a[i]; j++)
ans = ans + f[i][j];
n %= pow[i - 1];
ans[a[i]] += n + 1;
}
return ans;
}
int main() {
pow[0] = 1;
for (int i = 1; i <= 14; i++)
pow[i] = pow[i - 1] * 10;
ll x, y;
scanf("%lld %lld", &x, &y);
node ans1 = calc(y), ans2 = calc(x - 1);
for (int i = 0; i <= 8; i++)
printf("%lld ", ans1[i] - ans2[i]);
printf("%lld\n", ans1[9] - ans2[9]);
return 0;
}

[bzoj1833][ZJOI2010]count 数字计数——数位dp的更多相关文章

  1. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  2. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  3. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  4. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  5. BZOJ 1833 ZJOI2010 count 数字计数 数位DP

    题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...

  6. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  7. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  8. BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】

    题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...

  9. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

随机推荐

  1. Pythond函数的参数使用操作注意事项

    定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了.对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解 ...

  2. pycharm中文乱码问题 总结

    前言: 这几天刚刚开始学习python,然后就安装了pycharm,但是那个中文乱码的问题真是让人心烦,在网上找了好久,都写得好乱,今天终于让我解决了,在这里总结一下经验,希望可以帮到你们 问题:如下 ...

  3. Android 内嵌 HTML5 并进行交互

    Android与HTML5的交互主要是两个部分, 与HTML5的交互以及与JavaScript的交互, 与HTML5的交互可以通过注册onclick事件转化为与JavaScript的交互 Androi ...

  4. Android 判断屏幕方向一个大坑

    正常的判断屏幕方向的代码: /** 获取屏幕是否是竖屏 * @return */ @SuppressLint("SwitchIntDef") public boolean isSc ...

  5. 常见算法用Pascal实现

    基本算法    这些都是非常基本的的算法,希望所有学习的人都能理解!        1.数论算法      求两数的最大公约数      function gcd(a,b:integer):integ ...

  6. 《数据结构》C++代码 邻接表与邻接矩阵

    上一篇“BFS与DFS”写完,突然意识到这个可能偏离了“数据结构”的主题,所以回来介绍一下图的存储:邻接表和邻接矩阵. 存图有两种方式,邻接矩阵严格说就是一个bool型的二维数组,map[i][j]表 ...

  7. 聊聊、Spring WebApplicationInitializer

    说到 WebApplicationInitializer,这个接口是为了实现代码配置 Web 功能.只要实现了这个接口,那么就可以实现 Filter,Servlet,Listener 等配置,跟在 x ...

  8. PHP遍历数组的几种方法

      这三种方法中效率最高的是使用foreach语句遍历数组.从PHP4开始就引入了foreach结构,是PHP中专门为遍历数组而设计的语句,推荐大家使用.先分别介绍这几种方法     PHP中遍历数组 ...

  9. git使用及一些配置、问题

    安装https://git-for-windows.github.io/ 一.绑定用户名.邮件地址 git config --global user.name "Your Name" ...

  10. php中普通方法和静态方法的区别以及抽象类和接口

    实例化类产生对象.class fenbi{ //普通成员,属于对象 public $length = "10cm"; //静态成员,静态变量,属于类. public static ...